"숫자 67"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (찾아 바꾸기 – “==관련도서== * 도서내검색<br> ** http://books.google.com/books?q= ** http://book.daum.net/search/contentSearch.do?query= * 도서검색<br> ** http://books.google.com/books?q= ** http://book.daum.net/search/mainSearch.d)
잔글 (찾아 바꾸기 – “* [http://math.dongascience.com/ 수학동아] * [http://www.ams.org/mathmoments/ Mathematical Moments from the AMS] * [http://betterexplained.com/ BetterExplained]” 문자열을 “” 문자열로)
148번째 줄: 148번째 줄:
 
** http://blogsearch.google.com/blogsearch?q=
 
** http://blogsearch.google.com/blogsearch?q=
 
* [http://navercast.naver.com/science/list 네이버 오늘의과학]
 
* [http://navercast.naver.com/science/list 네이버 오늘의과학]
* [http://math.dongascience.com/ 수학동아]
 
* [http://www.ams.org/mathmoments/ Mathematical Moments from the AMS]
 
* [http://betterexplained.com/ BetterExplained]
 

2012년 11월 2일 (금) 07:22 판

이 항목의 스프링노트 원문주소

 

 

개요

  • 복소 이차 수체 \(\mathbb{Q}(\sqrt{-67})\)의  class number 는 1이다
  • \(\mathbb{Z}[\frac{1+\sqrt{-67}}{2}]\) 는 UFD 이다
  • 소수이며, 비정규소수이다

 

 

class number 1

  • 복소 이차 수체 \(\mathbb{Q}(\sqrt{-d})\) 가 class number 1인 경우는 다음 9가지가 있다
    • \(d=1,2,3,7,11,19,43,67,163\)
  • 이로 인하여 여러가지 흥미로운 정수론적 성질을 갖게 된다
  • 가우스의 class number one 문제 항목 참조

 

 

오일러의 소수생성다항식

 

 

라마누잔 수

 

 

 

비정규소수

  • 67은 세번째로 작은 비정규소수
  • 베르누이 수
    \(B_{58}=\frac{84483613348880041862046775994036021}{354}\)
  • 67은 \(B_{58}\)의 분자 84483613348880041862046775994036021를 나누는 비정규소수이다

 

 

역사

 

 

 

메모

 

 

관련된 항목들

 

 

수학용어번역

 

 

사전 형태의 자료

 

 

관련논문

 


 

 

관련기사

 

 

블로그