"실 이차 수체의 유수와 기본 단위"의 두 판 사이의 차이
23번째 줄: | 23번째 줄: | ||
<h5>특수한 경우</h5> | <h5>특수한 경우</h5> | ||
− | <math>K=\mathbb{Q}(\sqrt{ | + | |
+ | |||
+ | <math>p=n^2+1</math> | ||
+ | |||
+ | <math>K=\mathbb{Q}(\sqrt{p})</math> | ||
+ | |||
+ | |||
2009년 11월 21일 (토) 18:30 판
이 항목의 스프링노트 원문주소
간단한 소개
- 복소이차수체의 경우 가우스의 class number one 문제 는 해결되었으나, 실 이차수체의 경우는 미해결
fundamental unit
- 디리클레의 unit 정리에 의하면, 실이차수체의 unit \(\mathfrak{O}_K^{*}\)들은 군을 이루며 유일한 원소 \(\epsilon>1\)가 존재하여 다음과 같은 구조를 가진다
\(\mathfrak{O}_K^{*} \simeq \{\pm 1\}\times \{\epsilon^n | n\in\mathbb{Z}\}\)
특수한 경우
\(p=n^2+1\)
\(K=\mathbb{Q}(\sqrt{p})\)
목록
- 아래의 목록은 \(K=\mathbb{Q}(\sqrt{n})\)에 대하여 각각 \(\sqrt{n}\), d=수체의 판별식, h= class number, fundametal unit, fundamental unit의 norm 을 나타냄
- AlgebraicNumber[Sqrt[n],{a,b}] 은 \(a+b\sqrt{n}\) 을 의미함
Sqrt[2], d=8,h=1,{AlgebraicNumber[Sqrt[2],{1,1}]}, Norm={-1}
Sqrt[3], d=12,h=1,{AlgebraicNumber[Sqrt[3],{2,1}]}, Norm={1}
Sqrt[5], d=5,h=1,{AlgebraicNumber[Sqrt[5],{1/2,1/2}]}, Norm={-1}
Sqrt[6], d=24,h=1,{AlgebraicNumber[Sqrt[6],{5,2}]}, Norm={1}
Sqrt[7], d=28,h=1,{AlgebraicNumber[Sqrt[7],{8,3}]}, Norm={1}
Sqrt[10], d=40,h=2,{AlgebraicNumber[Sqrt[10],{3,1}]}, Norm={-1}
Sqrt[11], d=44,h=1,{AlgebraicNumber[Sqrt[11],{10,3}]}, Norm={1}
Sqrt[13], d=13,h=1,{AlgebraicNumber[Sqrt[13],{3/2,1/2}]}, Norm={-1}
Sqrt[14], d=56,h=1,{AlgebraicNumber[Sqrt[14],{15,4}]}, Norm={1}
Sqrt[15], d=60,h=2,{AlgebraicNumber[Sqrt[15],{4,1}]}, Norm={1}
Sqrt[17], d=17,h=1,{AlgebraicNumber[Sqrt[17],{4,1}]}, Norm={-1}
Sqrt[19], d=76,h=1,{AlgebraicNumber[Sqrt[19],{170,39}]}, Norm={1}
Sqrt[21], d=21,h=1,{AlgebraicNumber[Sqrt[21],{5/2,1/2}]}, Norm={1}
Sqrt[22], d=88,h=1,{AlgebraicNumber[Sqrt[22],{197,42}]}, Norm={1}
Sqrt[23], d=92,h=1,{AlgebraicNumber[Sqrt[23],{24,5}]}, Norm={1}
Sqrt[26], d=104,h=2,{AlgebraicNumber[Sqrt[26],{5,1}]}, Norm={-1}
Sqrt[29], d=29,h=1,{AlgebraicNumber[Sqrt[29],{5/2,1/2}]}, Norm={-1}
Sqrt[30], d=120,h=2,{AlgebraicNumber[Sqrt[30],{11,2}]}, Norm={1}
Sqrt[31], d=124,h=1,{AlgebraicNumber[Sqrt[31],{1520,273}]}, Norm={1}
Sqrt[33], d=33,h=1,{AlgebraicNumber[Sqrt[33],{23,4}]}, Norm={1}
Sqrt[34], d=136,h=2,{AlgebraicNumber[Sqrt[34],{35,6}]}, Norm={1}
Sqrt[35], d=140,h=2,{AlgebraicNumber[Sqrt[35],{6,1}]}, Norm={1}
Sqrt[37], d=37,h=1,{AlgebraicNumber[Sqrt[37],{6,1}]}, Norm={-1}
Sqrt[38], d=152,h=1,{AlgebraicNumber[Sqrt[38],{37,6}]}, Norm={1}
Sqrt[39], d=156,h=2,{AlgebraicNumber[Sqrt[39],{25,4}]}, Norm={1}
Sqrt[41], d=41,h=1,{AlgebraicNumber[Sqrt[41],{32,5}]}, Norm={-1}
Sqrt[42], d=168,h=2,{AlgebraicNumber[Sqrt[42],{13,2}]}, Norm={1}
Sqrt[43], d=172,h=1,{AlgebraicNumber[Sqrt[43],{3482,531}]}, Norm={1}
Sqrt[46], d=184,h=1,{AlgebraicNumber[Sqrt[46],{24335,3588}]}, Norm={1}
Sqrt[47], d=188,h=1,{AlgebraicNumber[Sqrt[47],{48,7}]}, Norm={1}
Sqrt[51], d=204,h=2,{AlgebraicNumber[Sqrt[51],{50,7}]}, Norm={1}
Sqrt[53], d=53,h=1,{AlgebraicNumber[Sqrt[53],{7/2,1/2}]}, Norm={-1}
Sqrt[55], d=220,h=2,{AlgebraicNumber[Sqrt[55],{89,12}]}, Norm={1}
Sqrt[57], d=57,h=1,{AlgebraicNumber[Sqrt[57],{151,20}]}, Norm={1}
Sqrt[58], d=232,h=2,{AlgebraicNumber[Sqrt[58],{99,13}]}, Norm={-1}
Sqrt[59], d=236,h=1,{AlgebraicNumber[Sqrt[59],{530,69}]}, Norm={1}
Sqrt[61], d=61,h=1,{AlgebraicNumber[Sqrt[61],{39/2,5/2}]}, Norm={-1}
Sqrt[62], d=248,h=1,{AlgebraicNumber[Sqrt[62],{63,8}]}, Norm={1}
Sqrt[65], d=65,h=2,{AlgebraicNumber[Sqrt[65],{8,1}]}, Norm={-1}
Sqrt[66], d=264,h=2,{AlgebraicNumber[Sqrt[66],{65,8}]}, Norm={1}
Sqrt[67], d=268,h=1,{AlgebraicNumber[Sqrt[67],{48842,5967}]}, Norm={1}
Sqrt[69], d=69,h=1,{AlgebraicNumber[Sqrt[69],{25/2,3/2}]}, Norm={1}
Sqrt[70], d=280,h=2,{AlgebraicNumber[Sqrt[70],{251,30}]}, Norm={1}
Sqrt[71], d=284,h=1,{AlgebraicNumber[Sqrt[71],{3480,413}]}, Norm={1}
Sqrt[73], d=73,h=1,{AlgebraicNumber[Sqrt[73],{1068,125}]}, Norm={-1}
Sqrt[74], d=296,h=2,{AlgebraicNumber[Sqrt[74],{43,5}]}, Norm={-1}
Sqrt[77], d=77,h=1,{AlgebraicNumber[Sqrt[77],{9/2,1/2}]}, Norm={1}
Sqrt[78], d=312,h=2,{AlgebraicNumber[Sqrt[78],{53,6}]}, Norm={1}
Sqrt[79], d=316,h=3,{AlgebraicNumber[Sqrt[79],{80,9}]}, Norm={1}
Sqrt[82], d=328,h=4,{AlgebraicNumber[Sqrt[82],{9,1}]}, Norm={-1}
Sqrt[83], d=332,h=1,{AlgebraicNumber[Sqrt[83],{82,9}]}, Norm={1}
Sqrt[85], d=85,h=2,{AlgebraicNumber[Sqrt[85],{9/2,1/2}]}, Norm={-1}
Sqrt[86], d=344,h=1,{AlgebraicNumber[Sqrt[86],{10405,1122}]}, Norm={1}
Sqrt[87], d=348,h=2,{AlgebraicNumber[Sqrt[87],{28,3}]}, Norm={1}
Sqrt[89], d=89,h=1,{AlgebraicNumber[Sqrt[89],{500,53}]}, Norm={-1}
Sqrt[91], d=364,h=2,{AlgebraicNumber[Sqrt[91],{1574,165}]}, Norm={1}
Sqrt[93], d=93,h=1,{AlgebraicNumber[Sqrt[93],{29/2,3/2}]}, Norm={1}
Sqrt[94], d=376,h=1,{AlgebraicNumber[Sqrt[94],{2143295,221064}]}, Norm={1}
Sqrt[95], d=380,h=2,{AlgebraicNumber[Sqrt[95],{39,4}]}, Norm={1}
Sqrt[97], d=97,h=1,{AlgebraicNumber[Sqrt[97],{5604,569}]}, Norm={-1}
Sqrt[101], d=101,h=1,{AlgebraicNumber[Sqrt[101],{10,1}]}, Norm={-1}
Sqrt[102], d=408,h=2,{AlgebraicNumber[Sqrt[102],{101,10}]}, Norm={1}
Sqrt[103], d=412,h=1,{AlgebraicNumber[Sqrt[103],{227528,22419}]}, Norm={1}
Sqrt[105], d=105,h=2,{AlgebraicNumber[Sqrt[105],{41,4}]}, Norm={1}
Sqrt[106], d=424,h=2,{AlgebraicNumber[Sqrt[106],{4005,389}]}, Norm={-1}
Sqrt[107], d=428,h=1,{AlgebraicNumber[Sqrt[107],{962,93}]}, Norm={1}
Sqrt[109], d=109,h=1,{AlgebraicNumber[Sqrt[109],{261/2,25/2}]}, Norm={-1}
Sqrt[110], d=440,h=2,{AlgebraicNumber[Sqrt[110],{21,2}]}, Norm={1}
Sqrt[111], d=444,h=2,{AlgebraicNumber[Sqrt[111],{295,28}]}, Norm={1}
Sqrt[113], d=113,h=1,{AlgebraicNumber[Sqrt[113],{776,73}]}, Norm={-1}
Sqrt[114], d=456,h=2,{AlgebraicNumber[Sqrt[114],{1025,96}]}, Norm={1}
Sqrt[115], d=460,h=2,{AlgebraicNumber[Sqrt[115],{1126,105}]}, Norm={1}
Sqrt[118], d=472,h=1,{AlgebraicNumber[Sqrt[118],{306917,28254}]}, Norm={1}
Sqrt[119], d=476,h=2,{AlgebraicNumber[Sqrt[119],{120,11}]}, Norm={1}
Sqrt[122], d=488,h=2,{AlgebraicNumber[Sqrt[122],{11,1}]}, Norm={-1}
Sqrt[123], d=492,h=2,{AlgebraicNumber[Sqrt[123],{122,11}]}, Norm={1}
Sqrt[127], d=508,h=1,{AlgebraicNumber[Sqrt[127],{4730624,419775}]}, Norm={1}
Sqrt[129], d=129,h=1,{AlgebraicNumber[Sqrt[129],{16855,1484}]}, Norm={1}
Sqrt[130], d=520,h=4,{AlgebraicNumber[Sqrt[130],{57,5}]}, Norm={-1}
Sqrt[131], d=524,h=1,{AlgebraicNumber[Sqrt[131],{10610,927}]}, Norm={1}
Sqrt[133], d=133,h=1,{AlgebraicNumber[Sqrt[133],{173/2,15/2}]}, Norm={1}
Sqrt[134], d=536,h=1,{AlgebraicNumber[Sqrt[134],{145925,12606}]}, Norm={1}
Sqrt[137], d=137,h=1,{AlgebraicNumber[Sqrt[137],{1744,149}]}, Norm={-1}
Sqrt[138], d=552,h=2,{AlgebraicNumber[Sqrt[138],{47,4}]}, Norm={1}
Sqrt[139], d=556,h=1,{AlgebraicNumber[Sqrt[139],{77563250,6578829}]}, Norm={1}
Sqrt[141], d=141,h=1,{AlgebraicNumber[Sqrt[141],{95,8}]}, Norm={1}
Sqrt[142], d=568,h=3,{AlgebraicNumber[Sqrt[142],{143,12}]}, Norm={1}
Sqrt[143], d=572,h=2,{AlgebraicNumber[Sqrt[143],{12,1}]}, Norm={1}
Sqrt[145], d=145,h=4,{AlgebraicNumber[Sqrt[145],{12,1}]}, Norm={-1}
Sqrt[146], d=584,h=2,{AlgebraicNumber[Sqrt[146],{145,12}]}, Norm={1}
Sqrt[149], d=149,h=1,{AlgebraicNumber[Sqrt[149],{61/2,5/2}]}, Norm={-1}
Sqrt[151], d=604,h=1,{AlgebraicNumber[Sqrt[151],{1728148040,140634693}]}, Norm={1}
Sqrt[154], d=616,h=2,{AlgebraicNumber[Sqrt[154],{21295,1716}]}, Norm={1}
Sqrt[155], d=620,h=2,{AlgebraicNumber[Sqrt[155],{249,20}]}, Norm={1}
Sqrt[157], d=157,h=1,{AlgebraicNumber[Sqrt[157],{213/2,17/2}]}, Norm={-1}
Sqrt[158], d=632,h=1,{AlgebraicNumber[Sqrt[158],{7743,616}]}, Norm={1}
Sqrt[159], d=636,h=2,{AlgebraicNumber[Sqrt[159],{1324,105}]}, Norm={1}
Sqrt[161], d=161,h=1,{AlgebraicNumber[Sqrt[161],{11775,928}]}, Norm={1}
Sqrt[163], d=652,h=1,{AlgebraicNumber[Sqrt[163],{64080026,5019135}]}, Norm={1}
Sqrt[165], d=165,h=2,{AlgebraicNumber[Sqrt[165],{13/2,1/2}]}, Norm={1}
Sqrt[166], d=664,h=1,{AlgebraicNumber[Sqrt[166],{1700902565,132015642}]}, Norm={1}
Sqrt[167], d=668,h=1,{AlgebraicNumber[Sqrt[167],{168,13}]}, Norm={1}
Sqrt[170], d=680,h=4,{AlgebraicNumber[Sqrt[170],{13,1}]}, Norm={-1}
Sqrt[173], d=173,h=1,{AlgebraicNumber[Sqrt[173],{13/2,1/2}]}, Norm={-1}
Sqrt[174], d=696,h=2,{AlgebraicNumber[Sqrt[174],{1451,110}]}, Norm={1}
Sqrt[177], d=177,h=1,{AlgebraicNumber[Sqrt[177],{62423,4692}]}, Norm={1}
Sqrt[178], d=712,h=2,{AlgebraicNumber[Sqrt[178],{1601,120}]}, Norm={1}
Sqrt[179], d=716,h=1,{AlgebraicNumber[Sqrt[179],{4190210,313191}]}, Norm={1}
Sqrt[181], d=181,h=1,{AlgebraicNumber[Sqrt[181],{1305/2,97/2}]}, Norm={-1}
Sqrt[182], d=728,h=2,{AlgebraicNumber[Sqrt[182],{27,2}]}, Norm={1}
Sqrt[183], d=732,h=2,{AlgebraicNumber[Sqrt[183],{487,36}]}, Norm={1}
Sqrt[185], d=185,h=2,{AlgebraicNumber[Sqrt[185],{68,5}]}, Norm={-1}
Sqrt[186], d=744,h=2,{AlgebraicNumber[Sqrt[186],{7501,550}]}, Norm={1}
Sqrt[187], d=748,h=2,{AlgebraicNumber[Sqrt[187],{1682,123}]}, Norm={1}
Sqrt[190], d=760,h=2,{AlgebraicNumber[Sqrt[190],{52021,3774}]}, Norm={1}
Sqrt[191], d=764,h=1,{AlgebraicNumber[Sqrt[191],{8994000,650783}]}, Norm={1}
Sqrt[193], d=193,h=1,{AlgebraicNumber[Sqrt[193],{1764132,126985}]}, Norm={-1}
Sqrt[194], d=776,h=2,{AlgebraicNumber[Sqrt[194],{195,14}]}, Norm={1}
Sqrt[195], d=780,h=4,{AlgebraicNumber[Sqrt[195],{14,1}]}, Norm={1}
Sqrt[197], d=197,h=1,{AlgebraicNumber[Sqrt[197],{14,1}]}, Norm={-1}
Sqrt[199], d=796,h=1,{AlgebraicNumber[Sqrt[199],{16266196520,1153080099}]}, Norm={1}
사용된 매쓰매티카 명령어
P0 := {}
a[i_] := If[SquareFreeQ[i], P0 = Append[P0, i], P0]
Do[a[i], {i, 2, 200}]
Sqfr := P0
disc[n_] := NumberFieldDiscriminant[Sqrt[n]]
cl[n_] := NumberFieldClassNumber[Sqrt[n]]
fund[n_] := NumberFieldFundamentalUnits[Sqrt[n]]
an[n_] := AlgebraicNumberNorm[fund[n]]
Do[Print[Sqrt[n], ", d=", disc[n], ",", "h=", cl[n], ",", fund[n],
", Norm=", an[n]], {n, P0}]
재미있는 사실
역사
메모
관련된 항목들
수학용어번역
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/Fundamental_unit_(number_theory)
- http://en.wikipedia.org/wiki/
- http://www.wolframalpha.com/input/?i=
- NIST Digital Library of Mathematical Functions
- The On-Line Encyclopedia of Integer Sequences
관련논문
- New Computations Concerning the Cohen-Lenstra Heuristics
- te Riele, Herman; Williams, Hugh (2003), Experimental Mathematics 12 (1): 99–113
- http://www.jstor.org/action/doBasicSearch?Query=
- http://dx.doi.org/
관련도서 및 추천도서
- A Course in Computational Algebraic Number Theory
- Cohen, Henri (1993)
- 도서내검색
- 도서검색
관련기사
- 네이버 뉴스 검색 (키워드 수정)