"앤드류스-고든 항등식(Andrews-Gordon identity)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
64번째 줄: 64번째 줄:
 
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">역사</h5>
 
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">역사</h5>
  
 
+
*  1961 고든<br>
 
+
* http://www.google.com/search?hl=en&tbs=tl:1&q=ramanujan+gordon+andrews
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
 
* [[수학사연표 (역사)|수학사연표]]
 
* [[수학사연표 (역사)|수학사연표]]
 
*  
 
*  
104번째 줄: 103번째 줄:
 
* http://en.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/
 
* http://www.proofwiki.org/wiki/
 
* http://www.proofwiki.org/wiki/
 +
* http://mathworld.wolfram.com/Andrews-GordonIdentity.html
 
* http://www.wolframalpha.com/input/?i=
 
* http://www.wolframalpha.com/input/?i=
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
116번째 줄: 116번째 줄:
  
 
* [http://dx.doi.org/10.1007/s11139-006-0150-7 The Rogers–Selberg recursions, the Gordon–Andrews identities and intertwining operators]<br>
 
* [http://dx.doi.org/10.1007/s11139-006-0150-7 The Rogers–Selberg recursions, the Gordon–Andrews identities and intertwining operators]<br>
**   <br>
 
 
** Stefano Capparelli, James Lepowsky, Antun Milas, 2004
 
** Stefano Capparelli, James Lepowsky, Antun Milas, 2004
 
 
* [http://dx.doi.org/10.1017/S1446788700019492 Some formulas related to dilogarithms, the zeta function and the Andrews–Gordon identities]<br>
 
* [http://dx.doi.org/10.1017/S1446788700019492 Some formulas related to dilogarithms, the zeta function and the Andrews–Gordon identities]<br>
 
** B. Richmond and G. Szekeres, 1981
 
** B. Richmond and G. Szekeres, 1981
125번째 줄: 123번째 줄:
 
* [http://www.math.psu.edu/andrews/pdf/58.pdf On the General Rogers-Ramanujan Theorem.]<br>
 
* [http://www.math.psu.edu/andrews/pdf/58.pdf On the General Rogers-Ramanujan Theorem.]<br>
 
**  Andrews, G. E. Providence, RI: Amer. Math. Soc., 1974.<br>
 
**  Andrews, G. E. Providence, RI: Amer. Math. Soc., 1974.<br>
 +
*  An Analytic Generalization of the Rogers-Ramanujan Identities for Odd Moduli<br>
 +
**  George E. Andrews, PNAS October 1, 1974 vol. 71 no. 10 4082-4085<br>
 
* [http://www.jstor.org/stable/2372962 A Combinatorial Generalization of the Rogers-Ramanujan Identities]<br>
 
* [http://www.jstor.org/stable/2372962 A Combinatorial Generalization of the Rogers-Ramanujan Identities]<br>
 
**  Gordon, B. Amer. J. Math. 83, 393-399, 1961.<br>
 
**  Gordon, B. Amer. J. Math. 83, 393-399, 1961.<br>

2010년 8월 2일 (월) 23:56 판

이 항목의 스프링노트 원문주소

 

 

개요

 

 

항등식

 

\(\sum_{n_1,\cdots,n_{k-1}\geq0}\frac{x^{N_1^2+\cdots+N_{k-1}^2+N_i+\cdots+N_{k-1}}}{(x)_{n_1}...(x)_{n_{k-1}}}=\prod_{r\neq 0,\pm i \pmod {2k+1}}\frac{1}{1-x^r} \)

이 때, \(N_j=n_j+\cdots+n_{k-1}\)

 

 

얻어지는 이차형식

 

\(n_{1}^{2}\)

\((n_{1}+n_{2})^{2}+n_{2}^{2}\)

\((n_{1}+n_{2}+n_{3})^{2}+(n_{2}+n_{3})^{2}+n_{3}^{2}\)

\((n_{1}+n_{2}+n_{3}+n_{4})^{2}+(n_{2}+n_{3}+n_{4})^{2}+(n_{3}+n_{4})^{2}+n_{4}^{2}\)

행렬은

\(\text{A=}\left( \begin{array}{ccccc} 2 & 2 & 2 & 2 & 2 \\ 2 & 4 & 4 & 4 & 4 \\ 2 & 4 & 6 & 6 & 6 \\ 2 & 4 & 6 & 8 & 8 \\ 2 & 4 & 6 & 8 & 10 \end{array} \right)\)

 

 

 

 

재미있는 사실

 

 

 

역사

 

 

메모

 

 

관련된 항목들

 

 

수학용어번역

 

 

사전 형태의 자료

 

 

관련논문

 

 

관련도서

 

 

관련기사

 

 

블로그