"원시근(primitive root)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
5번째 줄: 5번째 줄:
 
** <math>(\mathbb{Z}/n\mathbb{Z})^\times</math>는 순환군이다 <math>\iff</math><math>n= 1, 2, 4, p^k,2 p^k</math> 이 때 p는 홀수인 소수
 
** <math>(\mathbb{Z}/n\mathbb{Z})^\times</math>는 순환군이다 <math>\iff</math><math>n= 1, 2, 4, p^k,2 p^k</math> 이 때 p는 홀수인 소수
 
** <math>(\mathbb{Z}/n\mathbb{Z})^\times</math>가 순환군일 때, 이 군을 생성하는 원소를 합동식 n 에 대한 원시근(primitive root modulo <em>n</em>)이라 부름
 
** <math>(\mathbb{Z}/n\mathbb{Z})^\times</math>가 순환군일 때, 이 군을 생성하는 원소를 합동식 n 에 대한 원시근(primitive root modulo <em>n</em>)이라 부름
 +
 +
 
  
 
 
 
 

2009년 11월 26일 (목) 18:44 판

간단한 소개
  • 군 \((\mathbb{Z}/n\mathbb{Z})^\times\) 는 언제 순환군이 될까?
    • \((\mathbb{Z}/n\mathbb{Z})^\times\)의 정의에 대해서는 합동식과 군론 을 참조
    • \((\mathbb{Z}/n\mathbb{Z})^\times\)는 순환군이다 \(\iff\)\(n= 1, 2, 4, p^k,2 p^k\) 이 때 p는 홀수인 소수
    • \((\mathbb{Z}/n\mathbb{Z})^\times\)가 순환군일 때, 이 군을 생성하는 원소를 합동식 n 에 대한 원시근(primitive root modulo n)이라 부름

 

 

하위주제들

 

 

 

하위페이지

 

 

재미있는 사실

 

 

관련된 단원

 

 

많이 나오는 질문

 

관련된 고교수학 또는 대학수학

 

관련된 다른 주제들

 

 

관련도서 및 추천도서

 

참고할만한 자료

 

 

관련기사

네이버 뉴스 검색 (키워드 수정)

 

 

블로그

 

이미지 검색

 

동영상