"원시근(primitive root)"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
5번째 줄: | 5번째 줄: | ||
** <math>(\mathbb{Z}/n\mathbb{Z})^\times</math>는 순환군이다 <math>\iff</math><math>n= 1, 2, 4, p^k,2 p^k</math> 이 때 p는 홀수인 소수 | ** <math>(\mathbb{Z}/n\mathbb{Z})^\times</math>는 순환군이다 <math>\iff</math><math>n= 1, 2, 4, p^k,2 p^k</math> 이 때 p는 홀수인 소수 | ||
** <math>(\mathbb{Z}/n\mathbb{Z})^\times</math>가 순환군일 때, 이 군을 생성하는 원소를 합동식 n 에 대한 원시근(primitive root modulo <em>n</em>)이라 부름 | ** <math>(\mathbb{Z}/n\mathbb{Z})^\times</math>가 순환군일 때, 이 군을 생성하는 원소를 합동식 n 에 대한 원시근(primitive root modulo <em>n</em>)이라 부름 | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
52번째 줄: | 14번째 줄: | ||
* [[초등정수론의 토픽들]] | * [[초등정수론의 토픽들]] | ||
− | + | http://en.wikipedia.org/wiki/Primitive_root_modulo_n | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− |
2009년 12월 26일 (토) 05:14 판
간단한 소개
- 군 \((\mathbb{Z}/n\mathbb{Z})^\times\) 는 언제 순환군이 될까?
- \((\mathbb{Z}/n\mathbb{Z})^\times\)의 정의에 대해서는 합동식과 군론 을 참조
- \((\mathbb{Z}/n\mathbb{Z})^\times\)는 순환군이다 \(\iff\)\(n= 1, 2, 4, p^k,2 p^k\) 이 때 p는 홀수인 소수
- \((\mathbb{Z}/n\mathbb{Z})^\times\)가 순환군일 때, 이 군을 생성하는 원소를 합동식 n 에 대한 원시근(primitive root modulo n)이라 부름