"원시근(primitive root)"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
1번째 줄: | 1번째 줄: | ||
− | <h5> | + | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소</h5> |
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">개요</h5> | ||
* 군 <math>(\mathbb{Z}/n\mathbb{Z})^\times</math> 는 언제 순환군이 될까?<br> | * 군 <math>(\mathbb{Z}/n\mathbb{Z})^\times</math> 는 언제 순환군이 될까?<br> | ||
8번째 줄: | 14번째 줄: | ||
− | <h5>관련된 | + | |
+ | |||
+ | <h5>재미있는 사실</h5> | ||
+ | |||
+ | |||
+ | |||
+ | * 네이버 지식인 http://kin.search.naver.com/search.naver?where=kin_qna&query= | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>역사</h5> | ||
+ | |||
+ | * [[수학사연표 (역사)|수학사연표]] | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>메모</h5> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>관련된 항목들</h5> | ||
* [[추상대수학]] | * [[추상대수학]] | ||
14번째 줄: | 46번째 줄: | ||
* [[초등정수론의 토픽들]] | * [[초등정수론의 토픽들]] | ||
− | http://en.wikipedia.org/wiki/Primitive_root_modulo_n | + | |
+ | |||
+ | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역</h5> | ||
+ | |||
+ | * http://www.google.com/dictionary?langpair=en|ko&q= | ||
+ | * [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br> | ||
+ | ** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr= | ||
+ | * [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판] | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>사전 형태의 자료</h5> | ||
+ | |||
+ | * http://ko.wikipedia.org/wiki/ | ||
+ | * http://en.wikipedia.org/wiki/Primitive_root_modulo_n<br> | ||
+ | * http://en.wikipedia.org/wiki/ | ||
+ | * http://www.wolframalpha.com/input/?i= | ||
+ | * [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions] | ||
+ | * [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]<br> | ||
+ | ** http://www.research.att.com/~njas/sequences/?q= | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>관련논문</h5> | ||
+ | |||
+ | * http://www.jstor.org/action/doBasicSearch?Query= | ||
+ | * http://dx.doi.org/ | ||
+ | |||
+ | |||
+ | |||
+ | <h5>관련도서 및 추천도서</h5> | ||
+ | |||
+ | * 도서내검색<br> | ||
+ | ** http://books.google.com/books?q= | ||
+ | ** http://book.daum.net/search/contentSearch.do?query= | ||
+ | * 도서검색<br> | ||
+ | ** http://books.google.com/books?q= | ||
+ | ** http://book.daum.net/search/mainSearch.do?query= | ||
+ | ** http://book.daum.net/search/mainSearch.do?query= | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>관련기사</h5> | ||
+ | |||
+ | * 네이버 뉴스 검색 (키워드 수정)<br> | ||
+ | ** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query= | ||
+ | ** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query= | ||
+ | ** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query= | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>블로그</h5> | ||
+ | |||
+ | * 구글 블로그 검색<br> | ||
+ | ** http://blogsearch.google.com/blogsearch?q= | ||
+ | * [http://navercast.naver.com/science/list 네이버 오늘의과학] | ||
+ | * [http://math.dongascience.com/ 수학동아] | ||
+ | * [http://www.ams.org/mathmoments/ Mathematical Moments from the AMS] | ||
+ | * [http://betterexplained.com/ BetterExplained] |
2009년 12월 26일 (토) 05:23 판
이 항목의 스프링노트 원문주소
개요
- 군 \((\mathbb{Z}/n\mathbb{Z})^\times\) 는 언제 순환군이 될까?
- \((\mathbb{Z}/n\mathbb{Z})^\times\)의 정의에 대해서는 합동식과 군론 을 참조
- \((\mathbb{Z}/n\mathbb{Z})^\times\)는 순환군이다 \(\iff\)\(n= 1, 2, 4, p^k,2 p^k\) 이 때 p는 홀수인 소수
- \((\mathbb{Z}/n\mathbb{Z})^\times\)가 순환군일 때, 이 군을 생성하는 원소를 합동식 n 에 대한 원시근(primitive root modulo n)이라 부름
재미있는 사실
역사
메모
관련된 항목들
수학용어번역
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/Primitive_root_modulo_n
- http://en.wikipedia.org/wiki/
- http://www.wolframalpha.com/input/?i=
- NIST Digital Library of Mathematical Functions
- The On-Line Encyclopedia of Integer Sequences
관련논문
관련도서 및 추천도서
- 도서내검색
- 도서검색
관련기사
- 네이버 뉴스 검색 (키워드 수정)