"자코비 삼중곱(Jacobi triple product)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로)
잔글 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로)
1번째 줄: 1번째 줄:
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소==
  
 
* [[자코비 삼중곱(Jacobi triple product)]]
 
* [[자코비 삼중곱(Jacobi triple product)]]
7번째 줄: 7번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">개요</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">개요==
  
 
<math>\sum_{n=-\infty}^\infty  z^{n}q^{n^2}= \prod_{m=1}^\infty  \left( 1 - q^{2m}\right) \left( 1 + zq^{2m-1}\right) \left( 1 + z^{-1}q^{2m-1}\right)</math>
 
<math>\sum_{n=-\infty}^\infty  z^{n}q^{n^2}= \prod_{m=1}^\infty  \left( 1 - q^{2m}\right) \left( 1 + zq^{2m-1}\right) \left( 1 + z^{-1}q^{2m-1}\right)</math>
37번째 줄: 37번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 2em;">또다른 형태</h5>
+
<h5 style="margin: 0px; line-height: 2em;">또다른 형태==
  
 
<math>\sum _{n=-\infty }^{\infty } (-1)^na^nq^{n(n-1)/2}=\prod _{n=1}^{\infty } \left(1-aq^{n-1}\right)\left(1-a^{-1}q^n\right)\left(1-q^n\right)</math>
 
<math>\sum _{n=-\infty }^{\infty } (-1)^na^nq^{n(n-1)/2}=\prod _{n=1}^{\infty } \left(1-aq^{n-1}\right)\left(1-a^{-1}q^n\right)\left(1-q^n\right)</math>
47번째 줄: 47번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 2em;">특별한 경우</h5>
+
<h5 style="margin: 0px; line-height: 2em;">특별한 경우==
  
 
<math>\sum _{m=-\infty }^{\infty } (-1)^mq^{a m^2\pm b m +c}=q^c\prod _{n=1}^{\infty } \left(1-q^{2a n}\right)\left(1-q^{2a n-a+b}\right)\left(1-q^{2a n-a-b}\right)</math>
 
<math>\sum _{m=-\infty }^{\infty } (-1)^mq^{a m^2\pm b m +c}=q^c\prod _{n=1}^{\infty } \left(1-q^{2a n}\right)\left(1-q^{2a n-a+b}\right)\left(1-q^{2a n-a-b}\right)</math>
57번째 줄: 57번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 2em;">예</h5>
+
<h5 style="margin: 0px; line-height: 2em;">예==
  
 
* [[오일러의 오각수정리(pentagonal number theorem)]]<br><math>\sum _{m=-\infty }^{\infty } (-1)^mq^{\frac{3}{2}m^2\pm \frac{1}{2}m} = \prod _{n=1}^{\infty } \left(1-q^{3 n}\right)\left(1-q^{3n-2}\right)\left(1-q^{3n-1}\right)=\prod _{n=1}^{\infty } \left(1-q^{n}\right)</math><br>
 
* [[오일러의 오각수정리(pentagonal number theorem)]]<br><math>\sum _{m=-\infty }^{\infty } (-1)^mq^{\frac{3}{2}m^2\pm \frac{1}{2}m} = \prod _{n=1}^{\infty } \left(1-q^{3 n}\right)\left(1-q^{3n-2}\right)\left(1-q^{3n-1}\right)=\prod _{n=1}^{\infty } \left(1-q^{n}\right)</math><br>
70번째 줄: 70번째 줄:
 
 
 
 
  
==재미있는 사실</h5>
+
==재미있는 사실==
  
 
 
 
 
81번째 줄: 81번째 줄:
 
 
 
 
  
==역사</h5>
+
==역사==
  
 
 
 
 
94번째 줄: 94번째 줄:
 
 
 
 
  
==메모</h5>
+
==메모==
  
 
 
 
 
100번째 줄: 100번째 줄:
 
 
 
 
  
==관련된 항목들</h5>
+
==관련된 항목들==
  
 
 
 
 
108번째 줄: 108번째 줄:
 
 
 
 
  
==관련논문</h5>
+
==관련논문==
  
 
* '''[Andrews65]'''[http://www.jstor.org/stable/2033875 Shorter Notes: A Simple Proof of Jacobi's Triple Product Identity]<br>
 
* '''[Andrews65]'''[http://www.jstor.org/stable/2033875 Shorter Notes: A Simple Proof of Jacobi's Triple Product Identity]<br>

2012년 11월 1일 (목) 13:59 판

이 항목의 스프링노트 원문주소==    
개요== \(\sum_{n=-\infty}^\infty z^{n}q^{n^2}= \prod_{m=1}^\infty \left( 1 - q^{2m}\right) \left( 1 + zq^{2m-1}\right) \left( 1 + z^{-1}q^{2m-1}\right)\) \(z=1\) 인 경우 \(\sum_{n=-\infty}^\infty q^{n^2}= \prod_{m=1}^\infty \left( 1 - q^{2m}\right) \left( 1 + q^{2m-1}\right)^2\)   (증명) q-초기하급수(q-hypergeometric series) \(\prod_{n=0}^{\infty}(1+zq^n)=\sum_{n\geq 0}\frac{q^{n(n-1)/2}}{(1-q)(1-q^2)\cdots(1-q^n)} z^n\) \(\prod_{n=0}^{\infty}\frac{1}{1+zq^n}=\sum_{n\geq 0}\frac{(-1)^n}{(1-q)(1-q^2)\cdots(1-q^n)} z^n\) 를 활용   \(\prod_{m=0}^\infty \left( 1 + zq^{2m+1}\right)=\sum_{n\geq 0}\frac{q^nz^n}{(1-q^2)(1-q^4)\cdots(1-q^{2n})}\) [Andrews65] 참조 ■    
또다른 형태== \(\sum _{n=-\infty }^{\infty } (-1)^na^nq^{n(n-1)/2}=\prod _{n=1}^{\infty } \left(1-aq^{n-1}\right)\left(1-a^{-1}q^n\right)\left(1-q^n\right)\) \(\prod _{n=1}^{\infty } \left(1-x^{2n}\right)\left(1+x^{2n-1}Z\right)\left(1+x^{2n-1}Z^{-1}\text{}\text{}\right)=\sum _{m=-\infty }^{\infty } x^{m^2}Z^m\)    
특별한 경우== \(\sum _{m=-\infty }^{\infty } (-1)^mq^{a m^2\pm b m +c}=q^c\prod _{n=1}^{\infty } \left(1-q^{2a n}\right)\left(1-q^{2a n-a+b}\right)\left(1-q^{2a n-a-b}\right)\) \(\sum _{m=-\infty }^{\infty } q^{a m^2\pm b m +c}=q^c\prod _{n=1}^{\infty } \left(1-q^{2a n}\right)\left(1+q^{2a n-a+b}\right)\left(1+q^{2a n-a-b}\right)\)    
예==        

재미있는 사실

 

 

 

역사

 

 

 

메모

 

 

관련된 항목들

 

 

 

관련논문