"중심이항계수 (central binomial coefficient)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
14번째 줄: 14번째 줄:
  
 
Central Binomial Sums
 
Central Binomial Sums
 +
 +
 
 +
 +
 
 +
 +
<h5 style="line-height: 2em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px;">역삼각함수</h5>
 +
 +
<math>2(\sin^{-1} x)^2=\sum_{n=1}^{\finfty}\frac{(2x)^{2n}}{n^2\binom{2n}{n}}</math>
 +
 +
 
  
 
 
 
 
25번째 줄: 35번째 줄:
 
<math>\zeta(3) = \frac{5}{2} \sum_{n=1}^\infty \frac{(-1)^{n-1}}{n^3\binom{2n}{n}}</math>
 
<math>\zeta(3) = \frac{5}{2} \sum_{n=1}^\infty \frac{(-1)^{n-1}}{n^3\binom{2n}{n}}</math>
  
<math>\zeta(3) = \frac{5}{2} \sum_{n=1}^\infty \frac{(-1)^{n-1}}{n^3\binom{2n}{n}}</math>
+
<math>\zeta(4) = \frac{36}{17} \sum_{n=1}^\infty \frac{1}{n^4\binom{2n}{n}}</math>
 
 
 
 
  
 
 
 
 

2010년 6월 8일 (화) 10:53 판

이 항목의 스프링노트 원문주소

 

 

개요
  • 다음과 같은 이항계수로 정의
    \({2n \choose n}=\frac{(2n)!}{(n!)^2}\)

 

 

Central Binomial Sums

 

 

역삼각함수

\(2(\sin^{-1} x)^2=\sum_{n=1}^{\finfty}\frac{(2x)^{2n}}{n^2\binom{2n}{n}}\)

 

 

 

리만제타함수

\(\zeta(2)=3\sum_{n=1}^{\infty}\frac{1}{n^{2}\binom{2n}{n}}\)

\(\zeta(3) = \frac{5}{2} \sum_{n=1}^\infty \frac{(-1)^{n-1}}{n^3\binom{2n}{n}}\)

\(\zeta(4) = \frac{36}{17} \sum_{n=1}^\infty \frac{1}{n^4\binom{2n}{n}}\)

 

 

재미있는 사실

 

 

 

역사

 

 

 

메모

 

 

관련된 항목들

 

 

수학용어번역

 

 

사전 형태의 자료

 

 

관련논문

 

 

관련도서

 

 

관련기사

 

 

블로그