"초기하 미분방정식(Hypergeometric differential equations)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
9번째 줄: 9번째 줄:
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">개요</h5>
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">개요</h5>
  
* <math>0,1,\infty</math> 세 점에서 [[search?q=%EC%A0%95%EA%B7%9C%ED%8A%B9%EC%9D%B4%EC%A0%90(regular%20singular%20points)&parent id=1950524|정규특이점(regular singular points)]]을 가지는 2계 선형 미분방정식<br>
+
* <math>0,1,\infty</math> 세 점에서 [[search?q=%EC%A0%95%EA%B7%9C%ED%8A%B9%EC%9D%B4%EC%A0%90%28regular%20singular%20points%29&parent id=1950524|정규특이점(regular singular points)]]을 가지는 2계 선형 미분방정식<br>
 
*  다음과 같은 미분방정식을 말함<br><math>z(1-z)\frac{d^2w}{dz^2}+(c-(a+b+1)z)\frac{dw}{dz}-abw = 0</math><br>
 
*  다음과 같은 미분방정식을 말함<br><math>z(1-z)\frac{d^2w}{dz^2}+(c-(a+b+1)z)\frac{dw}{dz}-abw = 0</math><br>
  
35번째 줄: 35번째 줄:
 
<h5 style="margin: 0px; line-height: 2em;">쿰머의 24개 해</h5>
 
<h5 style="margin: 0px; line-height: 2em;">쿰머의 24개 해</h5>
  
* <math>0,1,\infty</math> 각 세 점에서의 급수해를 통해 서로 다른 여섯개의 해를 얻고, [[오일러-가우스 초기하함수2F1|오일러-가우스 초기하함수]]에 서술된 오일러 변환을 통해 각 해의 여섯가지 표현을 얻어 24개를 얻는다<br>
+
* [[search?q=%EC%BF%B0%EB%A8%B8%EC%9D%98%20%EC%B4%88%EA%B8%B0%ED%95%98%20%EB%AF%B8%EB%B6%84%EB%B0%A9%EC%A0%95%EC%8B%9D%EC%9D%98%2024%EA%B0%9C%20%ED%95%B4&parent id=1950524|쿰머의 초기하 미분방정식의 24개 해]]<br>
* <math>z=0</math>에서의 급수해<br><math>_2F_1(a,b;c;z)</math><br><math>z^{1-c}{}_2F_1(b+1-c,a+1-c;2-c;z)</math><br>
+
 
* <math>z=1</math>에서의 급수해<br><math>_2F_1(a,b;a+b+1-c;1-z)</math><br><math>(1-z)^{c-a-b}{}_2F_1(c-a,c-b;c+1-a-b;1-z)</math><br>
+
 
* <math>z=\infty</math>에서의 급수해<br><math>z^{-a}{}_2F_1(a,a+1-c;a+1-b;z^{-1})</math><br><math>z^{-b}{}_2F_1(b+1-c,b;b+1-a;z^{-1})</math><br>
 
  
 
 
 
 

2011년 6월 28일 (화) 04:06 판

이 항목의 스프링노트 원문주소

 

 

개요
  • \(0,1,\infty\) 세 점에서 정규특이점(regular singular points)을 가지는 2계 선형 미분방정식
  • 다음과 같은 미분방정식을 말함
    \(z(1-z)\frac{d^2w}{dz^2}+(c-(a+b+1)z)\frac{dw}{dz}-abw = 0\)
  • 리만구면 상의 세 점에서 정규특이점을 갖는 미분방정식은 초기하미분방정식으로 변형가능
  • 19세기에 활발하게 연구
  • Fuchsian 미분방정식의 간단하고 중요한 예로 이론의 모델을 제공

 

 

급수해

\(\,_2F_1(a,b;c;z)=\sum_{n=0}^{\infty} \frac{(a)_n(b)_n}{(c)_nn!}z^n, |z|<1\)

여기서 \((a)_n=a(a+1)(a+2)...(a+n-1)\)는 Pochhammer 기호와 캐츠(Kac) 기호

 

 

 

쿰머의 24개 해

 

 

 

재미있는 사실

 

 

역사

 

 

관련된 항목들

 

 

수학용어번역

 

사전 형태의 자료

 

 

관련논문

 

 

관련도서 및 추천도서

 

 

관련기사

 

 

블로그