"타원 모듈라 λ-함수"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
24번째 줄: | 24번째 줄: | ||
+ | |||
+ | |||
+ | |||
+ | <h5 style="margin: 0px; line-height: 2em;">ry</h5> | ||
41번째 줄: | 45번째 줄: | ||
<math>J(\tau)=\frac{4}{27}\frac{(1-\lambda+\lambda^2)^3}{\lambda^2(1-\lambda)^2}</math> | <math>J(\tau)=\frac{4}{27}\frac{(1-\lambda+\lambda^2)^3}{\lambda^2(1-\lambda)^2}</math> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5 style="margin: 0px; line-height: 2em;">special values</h5> | ||
+ | |||
+ | <math>\lambda(\sqrt{-1})=\frac{1}{2}</math> | ||
+ | |||
+ | |||
69번째 줄: | 83번째 줄: | ||
<h5>관련된 항목들</h5> | <h5>관련된 항목들</h5> | ||
+ | |||
+ | * [[타원적분의 singular value k]] | ||
2009년 12월 17일 (목) 05:47 판
이 항목의 스프링노트 원문주소
개요
- \(\lambda(\tau)=k^2(\tau)\) 는 modulus라고 불렸으며, 아벨, 자코비와 후학들(에르미트)에 의해 많이 연구됨
- \(k(\tau)\)에 대해서는 타원적분의 singular value k 참조
- \(k(\tau)\)에 대해서는 타원적분의 singular value k 참조
- 가장 기본적인 모듈라함수로 여겨졌으나, 나중에 \(j\)-불변량에 그 자리를 내줌
- 모듈라 군(modular group) \(\Gamma(2)\)에 대한 모듈라 함수가 됨
\(\Gamma(2) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbf{Z}) : \begin{pmatrix} a & b \\ c & d \end{pmatrix} \equiv \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \pmod{2} \right\}\) - 기본적인 내용은 [AHL1979] 7.3.4를 참고
세타함수와의 관계
- 자코비 세타함수
[[자코비 세타함수|]]\(k=k(\tau)=\frac{\theta_2^2(\tau)}{\theta_3^2(\tau)}\)
\(\lambda(\tau)=k^2(\tau)=\frac{\theta_2^4(\tau)}{\theta_3^4(\tau)}\)
ry
\(\lambda(\tau)=\frac{e_3-e_1}{e_3-e_2}\)
- 사영기하학과 교차비
\(z_4=\infty\) 인 경우
\((z_1,z_2;z_3,\infty) = \frac{(z_1-z_3)}{(z_2-z_3)}\) - 바이어슈트라스의 타원함수 참조
j-invariant와의 관계
\(J(\tau)=\frac{4}{27}\frac{(1-\lambda+\lambda^2)^3}{\lambda^2(1-\lambda)^2}\)
special values
\(\lambda(\sqrt{-1})=\frac{1}{2}\)
재미있는 사실
역사
메모
관련된 항목들
수학용어번역
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- http://www.wolframalpha.com/input/?i=
- NIST Digital Library of Mathematical Functions
- The On-Line Encyclopedia of Integer Sequences
관련논문
관련도서 및 추천도서
- [AHL1979]Complex Analysis
- Lars Ahlfors, 3rd edition, McGraw-Hill, 1979
- 도서내검색
- 도서검색
관련기사
- 네이버 뉴스 검색 (키워드 수정)