"페르마의 두 제곱의 합에 대한 정리"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
11번째 줄: 11번째 줄:
 
* 두 정수 <math>x,y</math>에 대하여 <math>x^2+y^2</math> 형태로 표현될 수 있는 소수 <math>p</math>에 대한 문제
 
* 두 정수 <math>x,y</math>에 대하여 <math>x^2+y^2</math> 형태로 표현될 수 있는 소수 <math>p</math>에 대한 문제
 
* <math>p=2</math> 또는 <math>p \equiv 1 \pmod 4</math> 이면 모두 적당한 정수 <math>x,y</math>에 대하여 <math>x^2+y^2</math> 형태로 표현가능
 
* <math>p=2</math> 또는 <math>p \equiv 1 \pmod 4</math> 이면 모두 적당한 정수 <math>x,y</math>에 대하여 <math>x^2+y^2</math> 형태로 표현가능
*  
+
* 소수 <math>p=2</math> 또는 <math>p \equiv 1 \pmod 4</math> 의 곱으로 표현되는 자연수는 <math>x^2+y^2</math> 형태로 표현가능
 +
 
 +
 
  
 
 
 
 
 +
 +
<h5>제곱의 합으로 표현하는 방법의 수</h5>
 +
 +
*  디오판투스 방정식 <math>x^2+y^2=n</math>의 해의 개수 <math>r_2(n)</math><br><math>r_2(n)=\sum_{d|n}\chi(d)</math><br><math>\chi(n)=(-1)^{\frac{n-1}{2}}</math><br>  <br>
  
 
 
 
 
104번째 줄: 110번째 줄:
 
29, 41, 61, 89, 101, 109, 149, 181, 229, 241, 269, 281, 349, 389
 
29, 41, 61, 89, 101, 109, 149, 181, 229, 241, 269, 281, 349, 389
 
----
 
----
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
149번째 줄: 141번째 줄:
 
* [[정수계수 이변수 이차형식(binary integral quadratic forms)]]
 
* [[정수계수 이변수 이차형식(binary integral quadratic forms)]]
 
* [[복소수]]
 
* [[복소수]]
 +
*  
  
 
 
 
 

2009년 12월 8일 (화) 17:01 판

이 항목의 스프링노트 원문주소

 

 

간단한 소개
  • 두 정수 \(x,y\)에 대하여 \(x^2+y^2\) 형태로 표현될 수 있는 소수 \(p\)에 대한 문제
  • \(p=2\) 또는 \(p \equiv 1 \pmod 4\) 이면 모두 적당한 정수 \(x,y\)에 대하여 \(x^2+y^2\) 형태로 표현가능
  • 소수 \(p=2\) 또는 \(p \equiv 1 \pmod 4\) 의 곱으로 표현되는 자연수는 \(x^2+y^2\) 형태로 표현가능

 

 

제곱의 합으로 표현하는 방법의 수
  • 디오판투스 방정식 \(x^2+y^2=n\)의 해의 개수 \(r_2(n)\)
    \(r_2(n)=\sum_{d|n}\chi(d)\)
    \(\chi(n)=(-1)^{\frac{n-1}{2}}\)
     

 

 

두 제곱의 합으로 표현되는 400까지의 정수
  • 0, 1, 2, 4, 5, 8, 9, 10, 13, 16, 17, 18, 20, 25, 26, 29, 32, 34, 36, 37, 40, 41, 45, 49, 50, 52, 53, 58, 61, 64, 65, 68, 72, 73, 74, 80, 81, 82, 85, 89, 90, 97, 98, 100, 101, 104, 106, 109, 113, 116, 117, 121, 122, 125, 128, 130, 136, 137, 144, 145, 146, 148, 149, 153, 157, 160, 162, 164, 169, 170, 173, 178, 180, 181, 185, 193, 194, 196, 197, 200, 202, 205, 208, 212, 218, 221, 225, 226, 229, 232, 233, 234, 241, 242, 244, 245, 250, 256, 257, 260, 261, 265, 269, 272, 274, 277, 281, 288, 289, 290, 292, 293, 296, 298, 305, 306, 313, 314, 317, 320, 324, 325, 328, 333, 337, 338, 340, 346, 349, 353, 356, 360, 361, 362, 365, 369, 370, 373, 377, 386, 388, 389, 392, 394, 397, 400

 

 

400이하의 소수

 

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397

 


 

 

\(x^2+y^2\)로 표현되는 400까지의 소수

2, 5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 101, 109, 113, 137, 149, 157, 173, 181, 193, 197, 229, 233, 241, 257, 269, 277, 281, 293, 313, 317, 337, 349, 353, 373, 389, 397

 

4 로 나눈 나머지가 1인 소수

5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 101, 109, 113, 137, 149, 157, 173, 181, 193, 197, 229, 233, 241, 257, 269, 277, 281, 293, 313, 317, 337, 349, 353, 373, 389, 397

 

 

그런데 사실 이야기가 여기서 끝나는 것이 아니다.

 


\(x^2+2y^2\)로 표현되는 400까지의 소수

2, 3, 11, 17, 19, 41, 43, 59, 67, 73, 83, 89, 97, 107, 113, 131, 137, 139, 163, 179, 193, 211, 227, 233, 241, 251, 257, 281, 283, 307, 313, 331, 337, 347, 353, 379

 

8로 나눈 나머지가 1이나 3인 소수

3, 11, 17, 19, 41, 43, 59, 67, 73, 83, 89, 97, 107, 113, 131, 137, 139, 163, 179, 193, 211, 227, 233, 241, 251, 257, 281, 283, 307, 313,331, 337, 347, 353, 379


\(x^2+3y^2\)로 표현되는 400까지의 소수

3, 7, 13, 19, 31, 37, 43, 61, 67, 73, 79, 97, 103, 109, 127, 139, 151, 157, 163, 181, 193, 199, 211, 223, 229, 241, 271, 277, 283, 307, 313, 331, 337, 349, 367, 373, 379, 397

 

12로 나눈 나머지가 1이나 7인 소수

7, 13, 19, 31, 37, 43, 61, 67, 73, 79, 97, 103, 109, 127, 139, 151, 157, 163, 181, 193, 199, 211, 223, 229, 241, 271, 277, 283, 307, 313, 331, 337, 349, 367, 373, 379, 397


\(x^2+4y^2\)로 표현되는 400까지의 소수

 

5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 101, 109, 113, 137, 149, 157, 173, 181, 193, 197, 229, 233, 241, 257, 269, 277, 281, 293, 313, 317, 337, 349, 353, 373, 389, 397

 

16으로 나눈 나머지가 1,5, 9,16 인 소수 (즉 4로 나눈나머지가 1인 소수)

5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 101, 109, 113, 137, 149, 157, 173, 181, 193, 197, 229, 233, 241, 257, 269, 277, 281, 293, 313, 317, 337, 349, 353, 373, 389, 397


\(x^2+5y^2\)로 표현되는 400까지의 소수

5, 29, 41, 61, 89, 101, 109, 149, 181, 229, 241, 269, 281, 349, 389

 

20으로 나눈 나머지가 1이나 7인 소수

29, 41, 61, 89, 101, 109, 149, 181, 229, 241, 269, 281, 349, 389


 

재미있는 사실

 

 

 

역사

 

 

메모

 

 

관련된 항목들

 

 

수학용어번역

 

 

사전 형태의 자료

 

 

관련논문

 

관련도서 및 추천도서

 

 

관련기사

 

 

블로그