"프랙탈"의 두 판 사이의 차이
1번째 줄: | 1번째 줄: | ||
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">이 항목의 스프링노트 원문주소</h5> | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">이 항목의 스프링노트 원문주소</h5> | ||
+ | |||
+ | * [[프랙탈]]<br> | ||
106번째 줄: | 108번째 줄: | ||
* http://ko.wikipedia.org/wiki/ | * http://ko.wikipedia.org/wiki/ | ||
+ | * http://en.wikipedia.org/wiki/Iterated_function_system | ||
* http://en.wikipedia.org/wiki/ | * http://en.wikipedia.org/wiki/ | ||
* http://www.wolframalpha.com/input/?i= | * http://www.wolframalpha.com/input/?i= | ||
128번째 줄: | 131번째 줄: | ||
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">관련도서</h5> | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">관련도서</h5> | ||
+ | * [http://www.amazon.com/Getting-Acquainted-Fractals-Gilbert-Helmberg/dp/3110190923 Getting Acquainted with Fractals]<br> | ||
+ | ** Gilbert Helmberg, 2007 | ||
* 도서내검색<br> | * 도서내검색<br> | ||
** http://books.google.com/books?q= | ** http://books.google.com/books?q= |
2010년 6월 5일 (토) 07:25 판
이 항목의 스프링노트 원문주소
개요
유한한 영역 - 무한한 경계
정의 : 언제나 부분이 전체를 닮는 자기 유사성(self-similarity),순환성과 소수(小數)차원을 특징으로 갖는 형상
[/pages/4485597/attachments/2376371 sdfsdf.jpg]
(1) 왼쪽 위의 삼각형의 둘레를 P1 그 옆의 삼각형을 P2, 왼쪽아래를 P3, .... 로 한다면
\(P_{n+1}=\frac{4}{3}(P_{n})\) 의 점화식이 성립되며, 따라서 n 을 무한대로 보내면 둘레는 무한으로 발산한다.
(2) (1)의 순서로 삼각형의 넓이를 S1, S2, ... 라 하자. 정확한 식을 위해 처음 한 변의 길이를 a 라고 하면, \(S_{1} = \frac{\sqrt3}{4}a^2\) 이다.
S2에서 원래 삼각형과 늘어난 삼각형의 길이비는 3:1 이고 넓이비는 9:1 이다. 따라서 \(S_{2} = S_{1} + \frac{3}{9}S_{1}\)
마찬가지로 \(S_{3} = S_{2} + \frac{12}{81}S_{1}\), \(S_{4} = S_{3} + \frac{48}{729}S_{1}\)
즉, 둘째 항부터 등비수열을 이루는 수열이다. 무한등비수열의 공식을 쓰면 \(\lim_{n \to \infty} S_{n}=\frac{8}{5}S_{1}\) 로 수렴한다.
이상의 프랙탈은 코흐의 눈송이 곡선으로 , 이외에도 시어핀스키 프랙탈 등이 있다. 프랙탈의 시작은 해안선의 길이를 측정하면서부터라고 전해진다.
http://www.wolframalpha.com/input/?i=koch+snowflake
서로 접하는 네 원에 대한 데카르트의 정리와 아폴로니우스 개스킷
(3) 프랙탈의 차원(수학적 매개변수) 유클리드 차원과는 다르게 프랙탈 차원은 대개 정수가 아닌 분수로 표현. 프랙탈을 n개의 완전히 똑같은 부분으로
나누었을 때 전체 도형과 한 부분 사이의 닮음비가 m:1이면 프랙탈 도형의 차원 d는 다음과 같이 정의한다.
\(d = \frac{logn}{logm}\) (안합쳐지네요 ㅠㅠ)
코흐의 눈송이 곡선을 예로 들어 차원을 계산하면, 4개의 똑같은 부분의 닮음비가 3:1 이므로 차원 d 는 \(\frac{log4}{log3}\)
재미있는 사실
- Math Overflow http://mathoverflow.net/search?q=
- 네이버 지식인 http://kin.search.naver.com/search.naver?where=kin_qna&query=
역사
메모
관련된 항목들
수학용어번역
- 단어사전 http://www.google.com/dictionary?langpair=en%7Cko&q=
- 발음사전 http://www.forvo.com/search/
- 대한수학회 수학 학술 용어집
- 남·북한수학용어비교
- 대한수학회 수학용어한글화 게시판
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/Iterated_function_system
- http://en.wikipedia.org/wiki/
- http://www.wolframalpha.com/input/?i=
- NIST Digital Library of Mathematical Functions
- The On-Line Encyclopedia of Integer Sequences
관련논문
관련도서
- Getting Acquainted with Fractals
- Gilbert Helmberg, 2007
- 도서내검색
- 도서검색
관련기사
- 네이버 뉴스 검색 (키워드 수정)