"프랙탈"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
1번째 줄: 1번째 줄:
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">이 항목의 스프링노트 원문주소</h5>
+
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소</h5>
  
 
* [[프랙탈]]<br>
 
* [[프랙탈]]<br>
7번째 줄: 7번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">개요</h5>
+
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">개요</h5>
  
 
*  다음 성질들을 가지는 도형 또는 형상<br>
 
*  다음 성질들을 가지는 도형 또는 형상<br>
15번째 줄: 15번째 줄:
 
 
 
 
  
<h5 style="line-height: 2em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px;">예</h5>
+
<h5 style="line-height: 2em; margin: 0px;">예</h5>
  
 
*  칸토르 집합<br>
 
*  칸토르 집합<br>
23번째 줄: 23번째 줄:
 
* [[서로 접하는 네 원에 대한 데카르트의 정리와 아폴로니우스 개스킷|아폴로니우스 개스킷]]<br>
 
* [[서로 접하는 네 원에 대한 데카르트의 정리와 아폴로니우스 개스킷|아폴로니우스 개스킷]]<br>
 
*  페아노 곡선<br>
 
*  페아노 곡선<br>
 +
*  멩거 스폰지<br>
  
 
 
 
 
28번째 줄: 29번째 줄:
 
 
 
 
  
<h5 style="line-height: 2em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px;">생성방법</h5>
+
<h5 style="line-height: 2em; margin: 0px;">생성방법</h5>
  
 
*  iterative function system<br>
 
*  iterative function system<br>
37번째 줄: 38번째 줄:
 
 
 
 
  
<h5 style="line-height: 2em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px;">줄리아 집합</h5>
+
<h5 style="line-height: 2em; margin: 0px;">예 : 줄리아 집합</h5>
  
 
*  복소수 <math>c\in\mathbb{C}</math>에 대하여 다음과 같은 점화식(iteration)을 정의하자. <br><math>z_0=z</math><br><math>z_{n+1} =  z_n^2 + c</math><br>
 
*  복소수 <math>c\in\mathbb{C}</math>에 대하여 다음과 같은 점화식(iteration)을 정의하자. <br><math>z_0=z</math><br><math>z_{n+1} =  z_n^2 + c</math><br>
47번째 줄: 48번째 줄:
 
 
 
 
  
<h5 style="line-height: 2em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">만델브로트 집합</h5>
+
<h5 style="line-height: 2em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">만델브로트 집합</h5>
  
 
*  복소수 <math>c\in\mathbb{C}</math>에 대하여 줄리아 집합에서와 같은 점화식을 정의<br><math>z_{n+1} =  z_n^2 + c</math><br>
 
*  복소수 <math>c\in\mathbb{C}</math>에 대하여 줄리아 집합에서와 같은 점화식을 정의<br><math>z_{n+1} =  z_n^2 + c</math><br>
58번째 줄: 59번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">재미있는 사실</h5>
+
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">재미있는 사실</h5>
  
 
 
 
 
69번째 줄: 70번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">역사</h5>
+
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">역사</h5>
  
 
 
 
 
81번째 줄: 82번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">메모</h5>
+
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">메모</h5>
  
 
 
 
 
87번째 줄: 88번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">관련된 항목들</h5>
+
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련된 항목들</h5>
  
 
* [[서로 접하는 네 원에 대한 데카르트의 정리와 아폴로니우스 개스킷]]<br>
 
* [[서로 접하는 네 원에 대한 데카르트의 정리와 아폴로니우스 개스킷]]<br>
96번째 줄: 97번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">수학용어번역</h5>
+
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역</h5>
  
 
* 단어사전 http://www.google.com/dictionary?langpair=en|ko&q=
 
* 단어사전 http://www.google.com/dictionary?langpair=en|ko&q=
109번째 줄: 110번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">사전 형태의 자료</h5>
+
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">사전 형태의 자료</h5>
  
 
* [http://ko.wikipedia.org/wiki/%ED%94%84%EB%9E%99%ED%83%88 http://ko.wikipedia.org/wiki/프랙탈]
 
* [http://ko.wikipedia.org/wiki/%ED%94%84%EB%9E%99%ED%83%88 http://ko.wikipedia.org/wiki/프랙탈]
115번째 줄: 116번째 줄:
 
* http://en.wikipedia.org/wiki/Iterated_function_system
 
* http://en.wikipedia.org/wiki/Iterated_function_system
 
* http://en.wikipedia.org/wiki/Mandelbrot_set
 
* http://en.wikipedia.org/wiki/Mandelbrot_set
 +
* http://www.wolframalpha.com/input/?i=julia+set
 
* http://www.wolframalpha.com/input/?i=mandelbrot+set
 
* http://www.wolframalpha.com/input/?i=mandelbrot+set
 
* http://www.wolframalpha.com/input/?i=
 
* http://www.wolframalpha.com/input/?i=
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
* [http://www.research.att.com/~njas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]<br>
+
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]<br>
 
** http://www.research.att.com/~njas/sequences/?q=
 
** http://www.research.att.com/~njas/sequences/?q=
  
125번째 줄: 127번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">관련논문</h5>
+
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련논문</h5>
  
 
* http://www.jstor.org/action/doBasicSearch?Query=
 
* http://www.jstor.org/action/doBasicSearch?Query=
135번째 줄: 137번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">관련도서</h5>
+
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련도서</h5>
  
 
* [http://www.amazon.com/Getting-Acquainted-Fractals-Gilbert-Helmberg/dp/3110190923 Getting Acquainted with Fractals]<br>
 
* [http://www.amazon.com/Getting-Acquainted-Fractals-Gilbert-Helmberg/dp/3110190923 Getting Acquainted with Fractals]<br>
151번째 줄: 153번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">관련기사</h5>
+
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련기사</h5>
  
 
*  네이버 뉴스 검색 (키워드 수정)<br>
 
*  네이버 뉴스 검색 (키워드 수정)<br>
162번째 줄: 164번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">블로그</h5>
+
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">블로그</h5>
  
 
* http://www.youtube.com/watch?v=iLinxe6ReJI
 
* http://www.youtube.com/watch?v=iLinxe6ReJI

2010년 10월 17일 (일) 10:50 판

이 항목의 스프링노트 원문주소

 

 

개요
  • 다음 성질들을 가지는 도형 또는 형상
    • 소수차원
    • 부분이 전체를 닮는 자기 유사성(self-similarity)
       

 

 

 

생성방법
  • iterative function system
  • escape time 프랙탈

 

 

예 : 줄리아 집합
  • 복소수 \(c\in\mathbb{C}\)에 대하여 다음과 같은 점화식(iteration)을 정의하자. 
    \(z_0=z\)
    \(z_{n+1} = z_n^2 + c\)
  • 이 점화식에 의한 의한 궤도가 유계가 되는 복소수 \(z\in\mathbb{C}\) 들이 이루는 집합의 경계를 복소수 \(c\in\mathbb{C}\)에 대한 줄리아 집합(Julia set)이라 한다

 

 

만델브로트 집합
  • 복소수 \(c\in\mathbb{C}\)에 대하여 줄리아 집합에서와 같은 점화식을 정의
    \(z_{n+1} = z_n^2 + c\)
  • 이 점화식에 의한 \(z_0=0\)의 궤도가 유계가 되는 복소수 \(c\in\mathbb{C}\)의 집합을 만델브로 집합이라 한다
  • 줄리아 집합이 연결집합이 되도록 하는 복소수 \(c\in\mathbb{C}\)

 

 

재미있는 사실

 

 

 

역사

 

 

 

메모

 

 

관련된 항목들

 

 

수학용어번역

 

 

사전 형태의 자료

 

 

관련논문

 

 

관련도서

 

 

관련기사

 

 

블로그