"오일러 치환"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (찾아 바꾸기 – “<br><math>” 문자열을 “:<math>” 문자열로)
12번째 줄: 12번째 줄:
  
 
* <math>a>0</math> 일때, <math>\sqrt{ax^2+bx+c}=t-\sqrt{a}x</math> 로 치환
 
* <math>a>0</math> 일때, <math>\sqrt{ax^2+bx+c}=t-\sqrt{a}x</math> 로 치환
*  예<br><math>\int\sqrt{x^2-4}\,dx</math><br><math>\sqrt{x^2-4}=t-x</math><br><math>x=\frac{4+t^2}{2t}</math><br><math>\int \frac{2t^4-16t^2+32}{8t^3}\,dt</math><br>
+
*  예:<math>\int\sqrt{x^2-4}\,dx</math>:<math>\sqrt{x^2-4}=t-x</math>:<math>x=\frac{4+t^2}{2t}</math>:<math>\int \frac{2t^4-16t^2+32}{8t^3}\,dt</math><br>
  
 
   
 
   
19번째 줄: 19번째 줄:
  
 
* <math>c>0</math> 일때, <math>\sqrt{ax^2+bx+c}=xt+\sqrt{c}</math> 로 치환
 
* <math>c>0</math> 일때, <math>\sqrt{ax^2+bx+c}=xt+\sqrt{c}</math> 로 치환
*  예<br><math>\int \frac{\sqrt{1-x^2}}{x}\,dx</math><br><math>\sqrt{1-x^2}=xt+1</math><br><math>x=\frac{2t}{t^2+1}</math><br><math>\int \frac{1+2 t^2-3 t^4}{t \left(1+t^2\right)^2}\,dt</math><br>
+
*  예:<math>\int \frac{\sqrt{1-x^2}}{x}\,dx</math>:<math>\sqrt{1-x^2}=xt+1</math>:<math>x=\frac{2t}{t^2+1}</math>:<math>\int \frac{1+2 t^2-3 t^4}{t \left(1+t^2\right)^2}\,dt</math><br>
  
 
   
 
   
28번째 줄: 28번째 줄:
  
 
* <math>ax^2+bx+c=0</math>가 두 실근u,v를 가질때, <math>\sqrt{ax^2+bx+c}=t(x-u)</math>로 치환<br>
 
* <math>ax^2+bx+c=0</math>가 두 실근u,v를 가질때, <math>\sqrt{ax^2+bx+c}=t(x-u)</math>로 치환<br>
*  예<br><math>\int\sqrt{x^2-4}\,dx</math><br><math>\sqrt{x^2-4}=t(x-2)</math><br><math>x=\frac{2t^2+2}{t^2-1}</math><br><math>\int \frac{2t^4-16t^2+32}{8t^3}\,dt</math><br>
+
*  예:<math>\int\sqrt{x^2-4}\,dx</math>:<math>\sqrt{x^2-4}=t(x-2)</math>:<math>x=\frac{2t^2+2}{t^2-1}</math>:<math>\int \frac{2t^4-16t^2+32}{8t^3}\,dt</math><br>
  
 
   
 
   
36번째 줄: 36번째 줄:
 
==타원적분==
 
==타원적분==
  
*  유리함수 R에 대한 <math>R(x,\sqrt{x^3+ax^2+bx+c})</math> 의 부정적분<br><math>\int R (x,\sqrt{x^3+ax^2+bx+c})\,dx</math><br> 단, <math>x^3+ax^2+bx+c</math>는 서로 다른 해를 가짐<br>
+
*  유리함수 R에 대한 <math>R(x,\sqrt{x^3+ax^2+bx+c})</math> 의 부정적분:<math>\int R (x,\sqrt{x^3+ax^2+bx+c})\,dx</math><br> 단, <math>x^3+ax^2+bx+c</math>는 서로 다른 해를 가짐<br>
 
*  곡선 <math>y^2=x^3+ax^2+bx+c</math>는 위에서처럼 적당한 유리함수 <math>x=f(t), y=g(t)</math> 로 매개화할 수 없기 때문에, 이야기가 달라지게 된다<br>
 
*  곡선 <math>y^2=x^3+ax^2+bx+c</math>는 위에서처럼 적당한 유리함수 <math>x=f(t), y=g(t)</math> 로 매개화할 수 없기 때문에, 이야기가 달라지게 된다<br>
 
* [[타원적분]]<br>
 
* [[타원적분]]<br>

2013년 1월 12일 (토) 10:01 판

개요

  • \(R(x,\sqrt{ax^2+bx+c})\)형태의 적분을 유리함수의 적분으로 바꾸는 변수치환 \(x=x(t)\)
  • 유리함수의 부정적분은 인수분해를 통하여 가능하므로, 이러한 형태의 적분 문제를 완전히 이해하는 셈이 된다
  • 이차곡선\(y^2=ax^2+bx+c\)를 유리함수 \(f,g\)를 사용하여 \(x=f(t), y=g(t)\)로 매개화할 수 있기 때문에 가능하다
  • 삼각치환이 잘 작동하는 이유를 설명해준다
  • 타원적분론을 공부하기 전에 이해하면 도움이 된다

오일러 치환

제1오일러 치환

  • \(a>0\) 일때, \(\sqrt{ax^2+bx+c}=t-\sqrt{a}x\) 로 치환
  • 예\[\int\sqrt{x^2-4}\,dx\]\[\sqrt{x^2-4}=t-x\]\[x=\frac{4+t^2}{2t}\]\[\int \frac{2t^4-16t^2+32}{8t^3}\,dt\]


제2오일러 치환

  • \(c>0\) 일때, \(\sqrt{ax^2+bx+c}=xt+\sqrt{c}\) 로 치환
  • 예\[\int \frac{\sqrt{1-x^2}}{x}\,dx\]\[\sqrt{1-x^2}=xt+1\]\[x=\frac{2t}{t^2+1}\]\[\int \frac{1+2 t^2-3 t^4}{t \left(1+t^2\right)^2}\,dt\]



제3오일러 치환

  • \(ax^2+bx+c=0\)가 두 실근u,v를 가질때, \(\sqrt{ax^2+bx+c}=t(x-u)\)로 치환
  • 예\[\int\sqrt{x^2-4}\,dx\]\[\sqrt{x^2-4}=t(x-2)\]\[x=\frac{2t^2+2}{t^2-1}\]\[\int \frac{2t^4-16t^2+32}{8t^3}\,dt\]



타원적분

  • 유리함수 R에 대한 \(R(x,\sqrt{x^3+ax^2+bx+c})\) 의 부정적분\[\int R (x,\sqrt{x^3+ax^2+bx+c})\,dx\]
    단, \(x^3+ax^2+bx+c\)는 서로 다른 해를 가짐
  • 곡선 \(y^2=x^3+ax^2+bx+c\)는 위에서처럼 적당한 유리함수 \(x=f(t), y=g(t)\) 로 매개화할 수 없기 때문에, 이야기가 달라지게 된다
  • 타원적분






역사



메모

관련된 항목들



사전 형태의 자료






관련도서

  • Courant, Richard. 1988. Differential and Integral Calculus. John Wiley & Sons.