"라마누잔과 파이"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (찾아 바꾸기 – “\sqrt{1-k^2 \sin^2\theta}}d\theta}{” 문자열을 “\sqrt{1-k^2 \sin^2\theta}d\theta” 문자열로)
1번째 줄: 1번째 줄:
==이 항목의 스프링노트 원문주소==
 
 
* [[라마누잔과 파이]]
 
 
 
 
 
 
 
 
 
==개요==
 
==개요==
  
* 라마누잔은 1914년에 다음과 같은 공식을 발표 '''[RAM1914]''':<math>\frac{1}{\pi}= \frac{2\sqrt2}{9801}\sum_{n=0}^{\infty}\frac{(4n)!(1103+26390n)}{(n!)^{4}396^{4n}}</math><br>
+
* 라마누잔은 1914년에 다음과 같은 공식을 발표 '''[RAM1914]''':<math>\frac{1}{\pi}= \frac{2\sqrt2}{9801}\sum_{n=0}^{\infty}\frac{(4n)!(1103+26390n)}{(n!)^{4}396^{4n}}</math><br>
* Chudnovsky 형제  '''[CHU88]'''<br>
+
* Chudnovsky 형제 '''[CHU88]'''
 
+
:<math>\frac{426880 \sqrt{10005}}{\pi} = \sum_{k=0}^\infty \frac{(6k)! (13591409 + 545140134k)}{(3k)!(k!)^3 (-640320)^{3k}}\!</math>
<math>\frac{426880 \sqrt{10005}}{\pi} = \sum_{k=0}^\infty \frac{(6k)! (13591409 + 545140134k)}{(3k)!(k!)^3 (-640320)^{3k}}\!</math>
 
  
 
* [[숫자 163]]
 
* [[숫자 163]]
  
 
+
  
 
+
  
==정의와 미리 알아야 할 것들==
+
==정의와 미리 알아야 할 것들==
  
* [[자코비 세타함수]], [[라마누잔의 class invariants]], [[타원적분]] 참조:<math>q=e^{2\pi i \tau}</math>:<math>\theta_{2}(\tau)= \sum_{n=-\infty}^\infty q^{(n+\frac{1}{2})^2/2}</math>:<math>\theta_3(\tau)=\sum_{n=-\infty}^\infty q^{n^2/2}</math><br>
+
* [[자코비 세타함수]], [[라마누잔의 class invariants]], [[타원적분]] 참조:<math>q=e^{2\pi i \tau}</math>:<math>\theta_{2}(\tau)= \sum_{n=-\infty}^\infty q^{(n+\frac{1}{2})^2/2}</math>:<math>\theta_3(\tau)=\sum_{n=-\infty}^\infty q^{n^2/2}</math><br>
  
 
<math>\theta_{4}(\tau)= \sum_{n=-\infty}^\infty (-1)^n q^{n^2/2}</math>
 
<math>\theta_{4}(\tau)= \sum_{n=-\infty}^\infty (-1)^n q^{n^2/2}</math>
38번째 줄: 29번째 줄:
 
<math>E'(k) = E(k')</math>
 
<math>E'(k) = E(k')</math>
  
* 위의 함수들을 이용하여, 양수 <math>r</math>에 대하여 다음을 정의
+
* 위의 함수들을 이용하여, 양수 <math>r</math>에 대하여 다음을 정의
  
 
<math>\lambda^{*}(r):=k(i\sqrt{r})</math>
 
<math>\lambda^{*}(r):=k(i\sqrt{r})</math>
46번째 줄: 37번째 줄:
 
* [[라마누잔의 class invariants]]:<math>g_n:=2^{-1/4}\frac{\eta(\frac{\sqrt{-n}}{2})}{\eta(\sqrt{-n})}</math><br>
 
* [[라마누잔의 class invariants]]:<math>g_n:=2^{-1/4}\frac{\eta(\frac{\sqrt{-n}}{2})}{\eta(\sqrt{-n})}</math><br>
  
 
+
  
 
+
  
==singular value function ==
+
==singular value function ==
  
*  타원적분이 만족시키는 르장드르 항등식<br>  <math>E(k)K'(k)+E'(k)K(k)-K(k)K'(k)=\frac{\pi}{2}</math> ([[산술기하평균함수(AGM)와 파이값의 계산|AGM과 파이값의 계산]])<br>
+
*  타원적분이 만족시키는 르장드르 항등식<br> <math>E(k)K'(k)+E'(k)K(k)-K(k)K'(k)=\frac{\pi}{2}</math> ([[산술기하평균함수(AGM)와 파이값의 계산|AGM과 파이값의 계산]])<br>
*  타원적분의 성질 :<math>K'(\lambda^{*}(r))=\sqrt{r}K(\lambda^{*}(r))</math><br>
+
*  타원적분의 성질 :<math>K'(\lambda^{*}(r))=\sqrt{r}K(\lambda^{*}(r))</math><br>
 
*  위의 둘을 사용하여 다음을 얻는다:<math>\alpha(r)=\frac{\pi}{4K^2}-\sqrt{r}(\frac{E}{K}-1)</math><br>
 
*  위의 둘을 사용하여 다음을 얻는다:<math>\alpha(r)=\frac{\pi}{4K^2}-\sqrt{r}(\frac{E}{K}-1)</math><br>
*  여기에 타원적분이 만족시키는 미분방정식:<math>\frac{dK}{dk}=\frac{E-k'^2K}{kk'^2}</math><br> 을 사용하면:<math>\alpha(r)=\frac{1}{\pi}(\frac{\pi}{2K})^2-\sqrt{r}(kk'^2\frac{\.K}{K}-k^2)</math><br> 를 얻게 되고, 이를 다시 쓰면:<math>\frac{1}{\pi}=\sqrt{N}k_Nk'_N^2\frac{4K\.K}{\pi^2}+[\alpha(N)-\sqrt{N}k^2_N]\frac{4K^2}{\pi^2}</math><br>
+
*  여기에 타원적분이 만족시키는 미분방정식:<math>\frac{dK}{dk}=\frac{E-k'^2K}{kk'^2}</math><br> 을 사용하면:<math>\alpha(r)=\frac{1}{\pi}(\frac{\pi}{2K})^2-\sqrt{r}(kk'^2\frac{\dot{K}}{K}-k^2)</math><br> 를 얻게 되고, 이를 다시 쓰면:<math>\frac{1}{\pi}=\sqrt{N}k_Nk'^2_N\frac{4K\dot{K}}{\pi^2}+[\alpha(N)-\sqrt{N}k^2_N]\frac{4K^2}{\pi^2}</math><br>
  
 
+
  
* <math>[\frac{2}{\pi}K(k)]^2 =m(k)F(y(k))</math> 꼴로 쓰여질때, 양변을 미분하면 다음을 얻는다:<math>\frac{4K\.K}{\pi^2}=\frac{1}{2}\.mF+\frac{1}{2}m\.y\.F(y)</math><br>
+
* <math>[\frac{2}{\pi}K(k)]^2 =m(k)F(y(k))</math> 꼴로 쓰여질때, 양변을 미분하면 다음을 얻는다:<math>\frac{4K\dot{K}}{\pi^2}=\frac{1}{2}\dot{m}F+\frac{1}{2}m\dot{y}\dot{F}(y)</math><br>
 
*  초기하급수를 다음과 같이 쓰면:<math>F(y)=\sum_{n=0}^{\infty}a_ny^n</math><br>
 
*  초기하급수를 다음과 같이 쓰면:<math>F(y)=\sum_{n=0}^{\infty}a_ny^n</math><br>
* <math>\frac{1}{\pi}=\sum_{n=0}^\infty a_n[\frac{\sqrt{N}}{2}k{k'}^2\.m+[\alpha(N)-\sqrt{N}k^2_N]m+\frac{n\sqrt{N}}{2}m\frac{\.y}{y}kk'^2]y^n</math>
+
* <math>\frac{1}{\pi}=\sum_{n=0}^\infty a_n[\frac{\sqrt{N}}{2}k{k'}^2\dot{m}+[\alpha(N)-\sqrt{N}k^2_N]m+\frac{n\sqrt{N}}{2}m\frac{\dot{y}}{y}kk'^2]y^n</math>
  
 
+
  
 
+
  
==라마누잔 파이 공식의 유도==
+
==라마누잔 파이 공식의 유도==
  
* 아래의 prop, thm 번호는 '''[BB1998] '''참조
+
* 아래의 prop, thm 번호는 '''[BB1998] '''참조
* [[초기하급수(Hypergeometric series)]] 항목의 Clausen 항등식이 중요하게 사용됨
+
* [[초기하급수(Hypergeometric series)]] 항목의 Clausen 항등식이 중요하게 사용됨
 
*  prop 5.6:<math>\frac{2}{\pi}K_s(h) = \,_2F_1(\frac{1}{4}-\frac{s}{2},\frac{1}{4}+\frac{s}{2};1;(2hh')^2)</math>:<math>[\frac{2}{\pi}K_s(h)]^2 = \,_2F_1(\frac{1}{2}-s,\frac{1}{2}+s,\frac{1}{2};1,1;(2hh')^2)</math><br>
 
*  prop 5.6:<math>\frac{2}{\pi}K_s(h) = \,_2F_1(\frac{1}{4}-\frac{s}{2},\frac{1}{4}+\frac{s}{2};1;(2hh')^2)</math>:<math>[\frac{2}{\pi}K_s(h)]^2 = \,_2F_1(\frac{1}{2}-s,\frac{1}{2}+s,\frac{1}{2};1,1;(2hh')^2)</math><br>
*  prop 5.7:<math>K_{1/4}(h)=(1+k^2)^{1/2}K(k)</math> if <math>2hh'=[\frac{g^{12}+g^{-12}}{2}]^{-1}</math><br>
+
*  prop 5.7:<math>K_{1/4}(h)=(1+k^2)^{1/2}K(k)</math> if <math>2hh'=[\frac{g^{12}+g^{-12}}{2}]^{-1}</math><br>
*  Thm 5.6:<math>\frac{2}{\pi}K(k) =(1+k^2)^{-1/2} \,_2F_1(\frac{1}{8},\frac{3}{8};1;[\frac{g^{12}+g^{-12}}{2}}]^{-2})</math><br>
+
*  Thm 5.6:<math>\frac{2}{\pi}K(k) =(1+k^2)^{-1/2} \,_2F_1(\frac{1}{8},\frac{3}{8};1;[\frac{g^{12}+g^{-12}}{2}]^{-2})</math><br>
*  Thm 5.7:<math>[\frac{2}{\pi}K(k)]^2 =(1+k^2)^{-1} \,_3F_2(\frac{1}{4},\frac{3}{4},\frac{1}{2};1,1;[\frac{g^{12}+g^{-12}}{2}}]^{-2})</math><br>
+
*  Thm 5.7:<math>[\frac{2}{\pi}K(k)]^2 =(1+k^2)^{-1} \,_3F_2(\frac{1}{4},\frac{3}{4},\frac{1}{2};1,1;[\frac{g^{12}+g^{-12}}{2}]^{-2})</math><br>
 
*  (5.5.16):<math>\frac{1}{\pi}=\sum_{n=0}^{\infty}\frac{(\frac{1}{4})_n(\frac{1}{2})_n(\frac{3}{4})_n}{(n!)^3}d_n(N)x_N^{2n+1}</math>:<math>x_N=(\frac{g_N^{12}+g_N^{-12}}{2})^{-1}</math>:<math>d_n(N)=[\frac{\alpha(N)x_N^{-1}}{1+k_N^2}-\frac{\sqrt{N}}{4}g_N^{-12}]+n\sqrt N(\frac{g_N^{12}-g_N^{-12}}{2})</math><br>
 
*  (5.5.16):<math>\frac{1}{\pi}=\sum_{n=0}^{\infty}\frac{(\frac{1}{4})_n(\frac{1}{2})_n(\frac{3}{4})_n}{(n!)^3}d_n(N)x_N^{2n+1}</math>:<math>x_N=(\frac{g_N^{12}+g_N^{-12}}{2})^{-1}</math>:<math>d_n(N)=[\frac{\alpha(N)x_N^{-1}}{1+k_N^2}-\frac{\sqrt{N}}{4}g_N^{-12}]+n\sqrt N(\frac{g_N^{12}-g_N^{-12}}{2})</math><br>
  
 
+
  
* <math>N=58</math> 일 때:<math>x_{58}=\frac{1}{99^2}=\frac{1}{9801}</math>, <math>d_n(58)=(1103+26390n)2\sqrt 2</math> 이므로 다음을 얻는다:<math>\frac{1}{\pi}= \frac{2\sqrt2}{9801}\sum_{n=0}^{\infty}\frac{(4n)!(1103+26390n)}{(n!)^{4}396^{4n}}</math><br>  <br>
+
* <math>N=58</math> 때:<math>x_{58}=\frac{1}{99^2}=\frac{1}{9801}</math>, <math>d_n(58)=(1103+26390n)2\sqrt 2</math> 이므로 다음을 얻는다:<math>\frac{1}{\pi}= \frac{2\sqrt2}{9801}\sum_{n=0}^{\infty}\frac{(4n)!(1103+26390n)}{(n!)^{4}396^{4n}}</math><br> <br>
  
 
+
  
 
+
  
 
==라마누잔의 class invariants==
 
==라마누잔의 class invariants==
90번째 줄: 81번째 줄:
 
* <math>g_{58}^2=\frac{\sqrt{29}+5}{2}</math>
 
* <math>g_{58}^2=\frac{\sqrt{29}+5}{2}</math>
  
 
+
  
 
+
  
 
==재미있는 사실==
 
==재미있는 사실==
  
 
* <math>e^{\sqrt{58}\pi}=24591257751.999999822\cdots</math>
 
* <math>e^{\sqrt{58}\pi}=24591257751.999999822\cdots</math>
*  <math>\frac{6}{5}{\phi}^2\approx{\pi}</math>
+
* <math>\frac{6}{5}{\phi}^2\approx{\pi}</math>
  
 
+
  
 
+
  
 
==역사==
 
==역사==
109번째 줄: 100번째 줄:
 
; <math>\frac{1}{\pi}= \frac{2\sqrt2}{9801}\sum_{n=0}^{\infty}\frac{(4n)!(1103+26390n)}{(n!)^{4}396^{4n}}</math>
 
; <math>\frac{1}{\pi}= \frac{2\sqrt2}{9801}\sum_{n=0}^{\infty}\frac{(4n)!(1103+26390n)}{(n!)^{4}396^{4n}}</math>
  
*  William Gosper used this series in 1985 to compute the first 17 million digits of <math>\pi</math>.<br>
+
*  William Gosper used this series in 1985 to compute the first 17 million digits of <math>\pi</math>.<br>
 
* [[수학사연표 (역사)|수학사연표]]
 
* [[수학사연표 (역사)|수학사연표]]
  
 
+
  
 
+
  
 
==관련된 항목들==
 
==관련된 항목들==
125번째 줄: 116번째 줄:
 
* [[숫자 163]]
 
* [[숫자 163]]
  
 
+
  
 
+
  
 
==매스매티카 파일 및 계산 리소스==
 
==매스매티카 파일 및 계산 리소스==
139번째 줄: 130번째 줄:
 
* [[매스매티카 파일 목록]]
 
* [[매스매티카 파일 목록]]
  
 
+
  
 
+
  
 
==관련도서==
 
==관련도서==
  
 
* '''[BB1998]'''[http://www.amazon.com/PI-AGM-Analytic-Computational-Complexity/dp/047131515X Pi and the AGM]<br>
 
* '''[BB1998]'''[http://www.amazon.com/PI-AGM-Analytic-Computational-Complexity/dp/047131515X Pi and the AGM]<br>
** Jonathan M. Borwein, Peter B. Borwein, Wiley-Interscience (July 13, 1998)
+
** Jonathan M. Borwein, Peter B. Borwein, Wiley-Interscience (July 13, 1998)
 
*  도서내검색<br>
 
*  도서내검색<br>
 
** http://books.google.com/books?q=
 
** http://books.google.com/books?q=
154번째 줄: 145번째 줄:
 
** http://book.daum.net/search/mainSearch.do?query=
 
** http://book.daum.net/search/mainSearch.do?query=
  
 
+
  
 
+
  
==사전 형태의 자료==
+
==사전 형태의 자료==
  
 
* http://ko.wikipedia.org/wiki/
 
* http://ko.wikipedia.org/wiki/
169번째 줄: 160번째 줄:
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
  
 
+
  
 
+
  
 
==리뷰논문, 에세이, 강의노트==
 
==리뷰논문, 에세이, 강의노트==
177번째 줄: 168번째 줄:
 
* J. M. Borwein, P. B. Borwein and D. H. Bailey [http://www.cecm.sfu.ca/organics/papers/borwein/paper/html/paper.html Ramanujan, Modular Equations, and Approximations to Pi or How to compute One Billion Digits of Pi]
 
* J. M. Borwein, P. B. Borwein and D. H. Bailey [http://www.cecm.sfu.ca/organics/papers/borwein/paper/html/paper.html Ramanujan, Modular Equations, and Approximations to Pi or How to compute One Billion Digits of Pi]
  
 
+
  
 
+
  
 
==관련논문[http://documents.wolfram.com/mathematica/Demos/Notebooks/CalculatingPi.html ]==
 
==관련논문[http://documents.wolfram.com/mathematica/Demos/Notebooks/CalculatingPi.html ]==
  
 
* [http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WK2-4PW5XTP-8&_user=4420&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000059607&_version=1&_urlVersion=0&_userid=4420&md5=07a10c67e340156fe912e39d39c0330a Ramanujan's series for 1/π arising from his cubic and quartic theories of elliptic functions]<br>
 
* [http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WK2-4PW5XTP-8&_user=4420&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000059607&_version=1&_urlVersion=0&_userid=4420&md5=07a10c67e340156fe912e39d39c0330a Ramanujan's series for 1/π arising from his cubic and quartic theories of elliptic functions]<br>
** Nayandeep Deka Baruaha, and Bruce C. Berndt, Journal of Mathematical Analysis and Applications, Volume 341, Issue 1, 2007
+
** Nayandeep Deka Baruaha, and Bruce C. Berndt, Journal of Mathematical Analysis and Applications, Volume 341, Issue 1, 2007
* [http://www.math.rutgers.edu/%7Ezeilberg/mamarim/mamarimhtml/ramapi.html A WZ Proof of Ramanujan's Formula for Pi ]<br>
+
* [http://www.math.rutgers.edu/%7Ezeilberg/mamarim/mamarimhtml/ramapi.html A WZ Proof of Ramanujan's Formula for Pi ]<br>
** Shalosh B. Ekhad and Doron Zeilberger,  `Geometry, Analysis, and Mechanics', ed. by J.M. Rassias, World Scientific, Singapore, 1994, 107-108.
+
** Shalosh B. Ekhad and Doron Zeilberger, `Geometry, Analysis, and Mechanics', ed. by J.M. Rassias, World Scientific, Singapore, 1994, 107-108.
 
* [http://www.cecm.sfu.ca/personal/pborwein/PAPERS/P62.pdf Class number three Ramanujan type series for 1/pi]<br>
 
* [http://www.cecm.sfu.ca/personal/pborwein/PAPERS/P62.pdf Class number three Ramanujan type series for 1/pi]<br>
** J. M. Borwein ,P. B. Borwein, Journal of Computational and Applied Mathematics (Vol.46 NO.1 / 1993)
+
** J. M. Borwein ,P. B. Borwein, Journal of Computational and Applied Mathematics (Vol.46 NO.1 / 1993)
 
* [http://www.jstor.org/stable/2325206 Ramanujan, Modular Equations, and Approximations to Pi or How to Compute One Billion Digits of Pi]<br>
 
* [http://www.jstor.org/stable/2325206 Ramanujan, Modular Equations, and Approximations to Pi or How to Compute One Billion Digits of Pi]<br>
** J. M. Borwein, P. B. Borwein and D. H. Bailey, <cite style="line-height: 2em;">The American Mathematical Monthly</cite>, Vol. 96, No. 3 (Mar., 1989), pp. 201-219
+
** J. M. Borwein, P. B. Borwein and D. H. Bailey, <cite style="line-height: 2em;">The American Mathematical Monthly</cite>, Vol. 96, No. 3 (Mar., 1989), pp. 201-219
 
* '''[CHU88]'''Approximations and complex multiplication according to Ramanujan<br>
 
* '''[CHU88]'''Approximations and complex multiplication according to Ramanujan<br>
** D. V. Chudnovsky and G. V. Chudnovsky, Ramanujan Revisited, Academic Press Inc., Boston, (1988), p. 375-396 & p. 468-472.
+
** D. V. Chudnovsky and G. V. Chudnovsky, Ramanujan Revisited, Academic Press Inc., Boston, (1988), p. 375-396 & p. 468-472.
  
* [http://www.cecm.sfu.ca/personal/pborwein/PAPERS/P35.pdf Explicit Ramanujan-type approximations to pi of high order ]<br>
+
* [http://www.cecm.sfu.ca/personal/pborwein/PAPERS/P35.pdf Explicit Ramanujan-type approximations to pi of high order ]<br>
** J. M. Borwein, P. B. Borwein, 1987
+
** J. M. Borwein, P. B. Borwein, 1987
 
* '''[RAM1914]'''[http://www.imsc.res.in/%7Erao/ramanujan/CamUnivCpapers/Cpaper6/page1.htm Modular equations and approximations to Pi]<br>
 
* '''[RAM1914]'''[http://www.imsc.res.in/%7Erao/ramanujan/CamUnivCpapers/Cpaper6/page1.htm Modular equations and approximations to Pi]<br>
** S. Ramanujan, Quart. J. Pure Appl. Math., (1914), vol. 45, p. 350-372
+
** S. Ramanujan, Quart. J. Pure Appl. Math., (1914), vol. 45, p. 350-372
 
 
[http://ko.wikipedia.org/wiki/http://en.wikipedia.org/wiki/ ]
 
  
 
 
  
 
+
  
 
==관련기사==
 
==관련기사==
209번째 줄: 197번째 줄:
 
*  The Mountains of Pi<br>
 
*  The Mountains of Pi<br>
 
** The New Yorker, 1992-3-2
 
** The New Yorker, 1992-3-2
*  네이버 뉴스 검색 (키워드 수정)<br>
 
** [http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=%EB%9D%BC%EB%A7%88%EB%88%84%EC%9E%94 http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=라마누잔]
 
** [http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=%ED%8C%8C%EC%9D%B4 http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=파이]
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
 
 
 
 
 
 
 
==블로그==
 
 
* 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q=
 
* 트렌비 블로그 검색 http://www.trenb.com/search.qst?q=
 

2013년 1월 12일 (토) 11:58 판

개요

  • 라마누잔은 1914년에 다음과 같은 공식을 발표 [RAM1914]\[\frac{1}{\pi}= \frac{2\sqrt2}{9801}\sum_{n=0}^{\infty}\frac{(4n)!(1103+26390n)}{(n!)^{4}396^{4n}}\]
  • Chudnovsky 형제 [CHU88]

\[\frac{426880 \sqrt{10005}}{\pi} = \sum_{k=0}^\infty \frac{(6k)! (13591409 + 545140134k)}{(3k)!(k!)^3 (-640320)^{3k}}\!\]



정의와 미리 알아야 할 것들

\(\theta_{4}(\tau)= \sum_{n=-\infty}^\infty (-1)^n q^{n^2/2}\)

\(k=k(\tau)=\frac{\theta_2^2(\tau)}{\theta_3^2(\tau)}\)

\(K(k) = \int_0^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{1-k^2 \sin^2\theta}}\)

\(E(k) = \int_0^{\frac{\pi}{2}} \sqrt{1-k^2 \sin^2\theta}d\theta\)

\(k'=\sqrt{1-k^2}=\frac{\theta_4^2(\tau)}{\theta_3^2(\tau)}\)

\(K'(k) = K(k')\)

\(E'(k) = E(k')\)

  • 위의 함수들을 이용하여, 양수 \(r\)에 대하여 다음을 정의

\(\lambda^{*}(r):=k(i\sqrt{r})\)

\(\alpha(r):=\frac{E'}{K}-\frac{\pi}{4K^2}\)



singular value function

  • 타원적분이 만족시키는 르장드르 항등식
    \(E(k)K'(k)+E'(k)K(k)-K(k)K'(k)=\frac{\pi}{2}\) (AGM과 파이값의 계산)
  • 타원적분의 성질 \[K'(\lambda^{*}(r))=\sqrt{r}K(\lambda^{*}(r))\]
  • 위의 둘을 사용하여 다음을 얻는다\[\alpha(r)=\frac{\pi}{4K^2}-\sqrt{r}(\frac{E}{K}-1)\]
  • 여기에 타원적분이 만족시키는 미분방정식\[\frac{dK}{dk}=\frac{E-k'^2K}{kk'^2}\]
    을 사용하면\[\alpha(r)=\frac{1}{\pi}(\frac{\pi}{2K})^2-\sqrt{r}(kk'^2\frac{\dot{K}}{K}-k^2)\]
    를 얻게 되고, 이를 다시 쓰면\[\frac{1}{\pi}=\sqrt{N}k_Nk'^2_N\frac{4K\dot{K}}{\pi^2}+[\alpha(N)-\sqrt{N}k^2_N]\frac{4K^2}{\pi^2}\]


  • \([\frac{2}{\pi}K(k)]^2 =m(k)F(y(k))\) 꼴로 쓰여질때, 양변을 미분하면 다음을 얻는다\[\frac{4K\dot{K}}{\pi^2}=\frac{1}{2}\dot{m}F+\frac{1}{2}m\dot{y}\dot{F}(y)\]
  • 초기하급수를 다음과 같이 쓰면\[F(y)=\sum_{n=0}^{\infty}a_ny^n\]
  • \(\frac{1}{\pi}=\sum_{n=0}^\infty a_n[\frac{\sqrt{N}}{2}k{k'}^2\dot{m}+[\alpha(N)-\sqrt{N}k^2_N]m+\frac{n\sqrt{N}}{2}m\frac{\dot{y}}{y}kk'^2]y^n\)



라마누잔 파이 공식의 유도

  • 아래의 prop, thm 번호는 [BB1998] 참조
  • 초기하급수(Hypergeometric series) 항목의 Clausen 항등식이 중요하게 사용됨
  • prop 5.6\[\frac{2}{\pi}K_s(h) = \,_2F_1(\frac{1}{4}-\frac{s}{2},\frac{1}{4}+\frac{s}{2};1;(2hh')^2)\]\[[\frac{2}{\pi}K_s(h)]^2 = \,_2F_1(\frac{1}{2}-s,\frac{1}{2}+s,\frac{1}{2};1,1;(2hh')^2)\]
  • prop 5.7\[K_{1/4}(h)=(1+k^2)^{1/2}K(k)\] if \(2hh'=[\frac{g^{12}+g^{-12}}{2}]^{-1}\)
  • Thm 5.6\[\frac{2}{\pi}K(k) =(1+k^2)^{-1/2} \,_2F_1(\frac{1}{8},\frac{3}{8};1;[\frac{g^{12}+g^{-12}}{2}]^{-2})\]
  • Thm 5.7\[[\frac{2}{\pi}K(k)]^2 =(1+k^2)^{-1} \,_3F_2(\frac{1}{4},\frac{3}{4},\frac{1}{2};1,1;[\frac{g^{12}+g^{-12}}{2}]^{-2})\]
  • (5.5.16)\[\frac{1}{\pi}=\sum_{n=0}^{\infty}\frac{(\frac{1}{4})_n(\frac{1}{2})_n(\frac{3}{4})_n}{(n!)^3}d_n(N)x_N^{2n+1}\]\[x_N=(\frac{g_N^{12}+g_N^{-12}}{2})^{-1}\]\[d_n(N)=[\frac{\alpha(N)x_N^{-1}}{1+k_N^2}-\frac{\sqrt{N}}{4}g_N^{-12}]+n\sqrt N(\frac{g_N^{12}-g_N^{-12}}{2})\]


  • \(N=58\) 일 때\[x_{58}=\frac{1}{99^2}=\frac{1}{9801}\], \(d_n(58)=(1103+26390n)2\sqrt 2\) 이므로 다음을 얻는다\[\frac{1}{\pi}= \frac{2\sqrt2}{9801}\sum_{n=0}^{\infty}\frac{(4n)!(1103+26390n)}{(n!)^{4}396^{4n}}\]



라마누잔의 class invariants



재미있는 사실

  • \(e^{\sqrt{58}\pi}=24591257751.999999822\cdots\)
  • \(\frac{6}{5}{\phi}^2\approx{\pi}\)



역사

  • Around 1910, the Indian mathematician Srinivasa Ramanujan discovered the formula
\(\frac{1}{\pi}= \frac{2\sqrt2}{9801}\sum_{n=0}^{\infty}\frac{(4n)!(1103+26390n)}{(n!)^{4}396^{4n}}\)
  • William Gosper used this series in 1985 to compute the first 17 million digits of \(\pi\).
  • 수학사연표



관련된 항목들



매스매티카 파일 및 계산 리소스



관련도서



사전 형태의 자료



리뷰논문, 에세이, 강의노트



관련논문[1]



관련기사

  • The Mountains of Pi
    • The New Yorker, 1992-3-2