"대수적다양체의 제타함수"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) 잔글 (찾아 바꾸기 – “<br><math>” 문자열을 “:<math>” 문자열로) |
Pythagoras0 (토론 | 기여) |
||
49번째 줄: | 49번째 줄: | ||
* http://www.google.com/search?hl=en&tbs=tl:1&q= | * http://www.google.com/search?hl=en&tbs=tl:1&q= | ||
− | * [[ | + | * [[수학사 연표]] |
* | * | ||
2013년 1월 14일 (월) 14:18 판
이 항목의 스프링노트 원문주소
개요
- 유한체 \(\mathbb{F}_q\) (\(q=p^n\)) 에서 정의된 사영다양체의 해의 개수에 대한 생성함수
로컬 제타함수
- \(N_r\) 이 \(\mathbb{F}_{q^r}\) 에서의 해의 개수라 하면\[Z(T,\mathbb{F}_{q})=\exp(\sum_{r=1}^{\infty}N_r\frac{T^r}{r})\]
- 소수 \(p\)의 경우 다음과 같이 쓰기도 함\[Z_p(T):=Z(T,\mathbb{F}_p)\]
- \(T=q^{-s}\) 로 쓰면, \(L\)-함수의 로컬인자들을 얻는다
예
- 사영 직선\[N_m = q^m + 1\]\[Z(T)=\frac{1}{(1 - T)(1- qT)}\]
- \(X_0^2=X_1^2+X_2^2\)\[Z(T)=\frac{1}{(1 - T)(1- qT)}\]
- non-singular 타원곡선 (over \(\mathbb{F}_p\))\[Z_p(T)=\frac{1-a_pT+pT^2}{(1 - T)(1- pT)}\]
여기서 \(a_p=p+1-\#E(\mathbb{F}_p)\)
재미있는 사실
- Math Overflow http://mathoverflow.net/search?q=
- 네이버 지식인 http://kin.search.naver.com/search.naver?where=kin_qna&query=
역사
메모
관련된 항목들
수학용어번역
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/Weil_conjectures
- http://en.wikipedia.org/wiki/Local_zeta_function
- http://www.wolframalpha.com/input/?i=
- NIST Digital Library of Mathematical Functions
- The On-Line Encyclopedia of Integer Sequences
관련논문
- Why Study Equations over Finite Fields? , Neal Koblitz, Mathematics Magazine, Vol. 55, No. 3 (May, 1982), pp. 144-149
- [1]
Atiyah, M. F. 1976. “Bakerian Lecture, 1975: Global Geometry”. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 347 (1650) (1월 13): 291-299 http://www.jstor.org/stable/78966
관련도서
- p-adic Numbers, p-adic Analysis, and Zeta-Function
- Neal Koblitz, Springer, 1996