"자코비 삼중곱(Jacobi triple product)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (찾아 바꾸기 – “수학사연표” 문자열을 “수학사 연표” 문자열로)
1번째 줄: 1번째 줄:
==이 항목의 스프링노트 원문주소==
 
 
* [[자코비 삼중곱(Jacobi triple product)]]
 
 
 
 
 
 
 
 
 
==개요==
 
==개요==
 
+
* 세타함수의 삼중곱
<math>\sum_{n=-\infty}^\infty  z^{n}q^{n^2}= \prod_{m=1}^\infty  \left( 1 - q^{2m}\right) \left( 1 + zq^{2m-1}\right) \left( 1 + z^{-1}q^{2m-1}\right)</math>
+
:<math>\sum_{n=-\infty}^\infty  z^{n}q^{n^2}= \prod_{m=1}^\infty  \left( 1 - q^{2m}\right) \left( 1 + zq^{2m-1}\right) \left( 1 + z^{-1}q^{2m-1}\right)</math>
 
+
* <math>z=1</math> 인 경우
<math>z=1</math> 인 경우
+
:<math>\sum_{n=-\infty}^\infty q^{n^2}= \prod_{m=1}^\infty  \left( 1 - q^{2m}\right) \left( 1 + q^{2m-1}\right)^2</math>
 
 
<math>\sum_{n=-\infty}^\infty q^{n^2}= \prod_{m=1}^\infty  \left( 1 - q^{2m}\right) \left( 1 + q^{2m-1}\right)^2</math>
 
  
 
 
 
 
  
 
(증명)
 
(증명)
 +
[[Q-초기하급수(q-hypergeometric series)와 양자미적분학(q-calculus)|q-초기하급수(q-hypergeometric series)]]의 다음 등식을 활용
 +
:<math>\prod_{n=0}^{\infty}(1+zq^n)=\sum_{n\geq 0}\frac{q^{n(n-1)/2}}{(1-q)(1-q^2)\cdots(1-q^n)} z^n</math>
 +
:<math>\prod_{n=0}^{\infty}\frac{1}{1+zq^n}=\sum_{n\geq 0}\frac{(-1)^n}{(1-q)(1-q^2)\cdots(1-q^n)} z^n</math>
  
[[Q-초기하급수(q-hypergeometric series)와 양자미적분학(q-calculus)|q-초기하급수(q-hypergeometric series)]]
+
:<math>\prod_{m=0}^\infty  \left( 1 + zq^{2m+1}\right)=\sum_{n\geq 0}\frac{q^nz^n}{(1-q^2)(1-q^4)\cdots(1-q^{2n})}</math>
 
 
<math>\prod_{n=0}^{\infty}(1+zq^n)=\sum_{n\geq 0}\frac{q^{n(n-1)/2}}{(1-q)(1-q^2)\cdots(1-q^n)} z^n</math>
 
 
 
<math>\prod_{n=0}^{\infty}\frac{1}{1+zq^n}=\sum_{n\geq 0}\frac{(-1)^n}{(1-q)(1-q^2)\cdots(1-q^n)} z^n</math>
 
 
 
를 활용
 
 
 
 
 
 
 
<math>\prod_{m=0}^\infty  \left( 1 + zq^{2m+1}\right)=\sum_{n\geq 0}\frac{q^nz^n}{(1-q^2)(1-q^4)\cdots(1-q^{2n})}</math>
 
  
 
'''[Andrews65] '''참조 ■
 
'''[Andrews65] '''참조 ■
39번째 줄: 22번째 줄:
 
==또다른 형태==
 
==또다른 형태==
  
<math>\sum _{n=-\infty }^{\infty } (-1)^na^nq^{n(n-1)/2}=\prod _{n=1}^{\infty } \left(1-aq^{n-1}\right)\left(1-a^{-1}q^n\right)\left(1-q^n\right)</math>
+
:<math>\sum _{n=-\infty }^{\infty } (-1)^na^nq^{n(n-1)/2}=\prod _{n=1}^{\infty } \left(1-aq^{n-1}\right)\left(1-a^{-1}q^n\right)\left(1-q^n\right)</math>
  
<math>\prod _{n=1}^{\infty } \left(1-x^{2n}\right)\left(1+x^{2n-1}Z\right)\left(1+x^{2n-1}Z^{-1}\text{}\text{}\right)=\sum _{m=-\infty }^{\infty } x^{m^2}Z^m</math>
+
:<math>\prod _{n=1}^{\infty } \left(1-x^{2n}\right)\left(1+x^{2n-1}Z\right)\left(1+x^{2n-1}Z^{-1}\text{}\text{}\right)=\sum _{m=-\infty }^{\infty } x^{m^2}Z^m</math>
  
 
 
 
 
48번째 줄: 31번째 줄:
  
 
==특별한 경우==
 
==특별한 경우==
 +
:<math>\sum _{m=-\infty }^{\infty } (-1)^mq^{a m^2\pm b m +c}=q^c\prod _{n=1}^{\infty } \left(1-q^{2a n}\right)\left(1-q^{2a n-a+b}\right)\left(1-q^{2a n-a-b}\right)</math>
  
<math>\sum _{m=-\infty }^{\infty } (-1)^mq^{a m^2\pm b m +c}=q^c\prod _{n=1}^{\infty } \left(1-q^{2a n}\right)\left(1-q^{2a n-a+b}\right)\left(1-q^{2a n-a-b}\right)</math>
+
:<math>\sum _{m=-\infty }^{\infty } q^{a m^2\pm b m +c}=q^c\prod _{n=1}^{\infty } \left(1-q^{2a n}\right)\left(1+q^{2a n-a+b}\right)\left(1+q^{2a n-a-b}\right)</math>
 
 
<math>\sum _{m=-\infty }^{\infty } q^{a m^2\pm b m +c}=q^c\prod _{n=1}^{\infty } \left(1-q^{2a n}\right)\left(1+q^{2a n-a+b}\right)\left(1+q^{2a n-a-b}\right)</math>
 
 
 
 
 
  
 
 
 
 
62번째 줄: 42번째 줄:
 
* [[로저스-라마누잔 항등식]]<br>
 
* [[로저스-라마누잔 항등식]]<br>
  
 
 
 
 
 
 
 
 
 
 
 
 
==재미있는 사실==
 
 
 
 
  
* Math Overflow http://mathoverflow.net/search?q=
 
* 네이버 지식인 http://kin.search.naver.com/search.naver?where=kin_qna&query=
 
 
 
 
 
 
 
  
 
==역사==
 
==역사==
 
 
 
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
* [http://jeff560.tripod.com/mathword.html Earliest Known Uses of Some of the Words of Mathematics]
 
* [http://jeff560.tripod.com/mathsym.html Earliest Uses of Various Mathematical Symbols]
 
 
* [[수학사 연표]]
 
* [[수학사 연표]]
  
114번째 줄: 71번째 줄:
 
* [http://www.jstor.org/stable/2320552 An Easy Proof of the Triple-Product Identity]<br>
 
* [http://www.jstor.org/stable/2320552 An Easy Proof of the Triple-Product Identity]<br>
 
** John A. Ewell, <cite style="line-height: 2em;">[http://www.jstor.org/action/showPublication?journalCode=amermathmont The American Mathematical Monthly]</cite>, Vol. 88, No. 4 (Apr., 1981), pp. 270-272
 
** John A. Ewell, <cite style="line-height: 2em;">[http://www.jstor.org/action/showPublication?journalCode=amermathmont The American Mathematical Monthly]</cite>, Vol. 88, No. 4 (Apr., 1981), pp. 270-272
* http://www.jstor.org/action/doBasicSearch?Query=
+
 
* http://www.ams.org/mathscinet
+
[[분류:q-급수]]
* http://dx.doi.org/
 

2013년 3월 13일 (수) 10:28 판

개요

  • 세타함수의 삼중곱

\[\sum_{n=-\infty}^\infty z^{n}q^{n^2}= \prod_{m=1}^\infty \left( 1 - q^{2m}\right) \left( 1 + zq^{2m-1}\right) \left( 1 + z^{-1}q^{2m-1}\right)\]

  • \(z=1\) 인 경우

\[\sum_{n=-\infty}^\infty q^{n^2}= \prod_{m=1}^\infty \left( 1 - q^{2m}\right) \left( 1 + q^{2m-1}\right)^2\]

 

(증명) q-초기하급수(q-hypergeometric series)의 다음 등식을 활용 \[\prod_{n=0}^{\infty}(1+zq^n)=\sum_{n\geq 0}\frac{q^{n(n-1)/2}}{(1-q)(1-q^2)\cdots(1-q^n)} z^n\] \[\prod_{n=0}^{\infty}\frac{1}{1+zq^n}=\sum_{n\geq 0}\frac{(-1)^n}{(1-q)(1-q^2)\cdots(1-q^n)} z^n\]

\[\prod_{m=0}^\infty \left( 1 + zq^{2m+1}\right)=\sum_{n\geq 0}\frac{q^nz^n}{(1-q^2)(1-q^4)\cdots(1-q^{2n})}\]

[Andrews65] 참조 ■

 

 

또다른 형태

\[\sum _{n=-\infty }^{\infty } (-1)^na^nq^{n(n-1)/2}=\prod _{n=1}^{\infty } \left(1-aq^{n-1}\right)\left(1-a^{-1}q^n\right)\left(1-q^n\right)\]

\[\prod _{n=1}^{\infty } \left(1-x^{2n}\right)\left(1+x^{2n-1}Z\right)\left(1+x^{2n-1}Z^{-1}\text{}\text{}\right)=\sum _{m=-\infty }^{\infty } x^{m^2}Z^m\]

 

 

특별한 경우

\[\sum _{m=-\infty }^{\infty } (-1)^mq^{a m^2\pm b m +c}=q^c\prod _{n=1}^{\infty } \left(1-q^{2a n}\right)\left(1-q^{2a n-a+b}\right)\left(1-q^{2a n-a-b}\right)\]

\[\sum _{m=-\infty }^{\infty } q^{a m^2\pm b m +c}=q^c\prod _{n=1}^{\infty } \left(1-q^{2a n}\right)\left(1+q^{2a n-a+b}\right)\left(1+q^{2a n-a-b}\right)\]

 


역사

 

 

메모

 

 

관련된 항목들

 

 

 

관련논문