"순환군"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (찾아 바꾸기 – “수학사연표” 문자열을 “수학사 연표” 문자열로)
63번째 줄: 63번째 줄:
  
 
==관련된 항목들==
 
==관련된 항목들==
 
+
* [[유한생성 아벨군의 기본정리]]
 
* [[순환군과 유한아벨군의 표현론]]
 
* [[순환군과 유한아벨군의 표현론]]
  
 
 
 
 
 
 
==수학용어번역==
 
 
*  단어사전<br>
 
** http://translate.google.com/#en|ko|
 
** http://ko.wiktionary.org/wiki/
 
* 발음사전 http://www.forvo.com/search/
 
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=
 
* [http://www.kss.or.kr/pds/sec/dic.aspx 한국통계학회 통계학 용어 온라인 대조표]
 
* [http://www.nktech.net/science/term/term_l.jsp?l_mode=cate&s_code_cd=MA 남·북한수학용어비교]
 
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
 
 
 
 
 
 
 
  
 
 
 
 
93번째 줄: 74번째 줄:
 
* http://en.wikipedia.org/wiki/Cyclic_groups
 
* http://en.wikipedia.org/wiki/Cyclic_groups
 
* http://viswiki.com/en/Cyclic_groups
 
* http://viswiki.com/en/Cyclic_groups
 
* [http://eom.springer.de/default.htm The Online Encyclopaedia of Mathematics]
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 
* [http://eqworld.ipmnet.ru/ The World of Mathematical Equations]
 
 
 
 
 
 
 
 
==리뷰논문, 에세이, 강의노트==
 

2013년 6월 1일 (토) 04:51 판

개요

  • 하나의 원소로 생성될 수 있는 군을 순환군(cyclic group)이라 함. 즉 모든 원소가 한 원소의 적당한 정수제곱으로 표현가능한 경우를 말함.
    • \((\mathbb Z,+)\) 의 경우는 1로 모든 원소를 생성가능하므로, 순환군임.
    • 2차원 평면의 정n각형에 대한 n개의 회전변환은 순환군임.
    • \(z^n=1\) 를 만족시키는 n개의 복소수들은 곱셈에 대하여 순환군이 됨
      • \(\zeta=e^{2\pi i \over n}\) 으로 생성가능.
    • \((\mathbb{Z}/n\mathbb{Z},+)\) 는 순환군임
    • \((\mathbb{Z}/n\mathbb{Z})^\times\) 가 순환군이 되는 경우는 원시근(primitive root) 항목을 참조

 

 

 

순환군의 부분군

(정리) 순환군의 모든 부분군은 순환군이다.

 

(증명)

H 가 G의 부분군이라고 하자.  a는 G의 생성원이라고 하자.

G의 원소는 \(\cdots, a^{-1},a^{-1},a^{0}, a^1,a^2,\cdots\)

따라서 각각의 원소에 이 지수를 정의할 수 있다. (\(\log_a g\) 로 생각할 수 있음)

항등원을 제외한 H의 원소중에서 이 지수의 값이 양수이며, 가장 작은 원소가 존재한다. 이 값을 \(d\) 로 두자.

H의 원소 \(a^k\) 에 대하여,  \(k=dq+r, 0\leq r < d\) 를 사용하면, \(a^k=a^{dq}a^r=(a^d)^q a^r\) 형태로 쓸 수 있다.

H는 부분군이므로,  \(a^r=(a^d)^{-q}a^k\) 는 H의 원소이다. \(d\)의 정의에 따라, \(r\) 은 0이어야 한다.

그러므로, 모든 H의 원소는 \(a^d\) 로 생성가능하다. ■

 

 

역사

 

 

 

메모

 

 

 

관련된 항목들


 

사전형태의 자료