"판별식 (discriminant) 함수와 라마누잔의 타우 함수(tau function)"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) |
Pythagoras0 (토론 | 기여) |
||
55번째 줄: | 55번째 줄: | ||
===헤케 L-급수=== | ===헤케 L-급수=== | ||
+ | * 헤케 L-급수를 다음과 같이 정의 | ||
+ | $$ | ||
+ | L(\Delta,s):=\sum_{n=1}^{\infty}\frac{\tau(n)}{n^s}, \quad \Re(s)>\frac{13}{2} | ||
+ | $$ | ||
+ | * 라마누잔 타우 함수의 성질로부터 다음의 무한곱을 얻는다 | ||
+ | $$ | ||
+ | L(\Delta,s)=\prod_{p}\frac{1}{(1-\tau(p) p^{-s}+p^{11-2s})} | ||
+ | $$ | ||
* [[L-함수, 제타 함수와 디리클레 급수]] | * [[L-함수, 제타 함수와 디리클레 급수]] | ||
− | |||
− | |||
− | |||
===Lehmer의 추측=== | ===Lehmer의 추측=== |
2013년 8월 27일 (화) 02:32 판
개요
- 복소타원곡선의 판별식으로부터 weight이 12인 모듈라 형식 $\Delta(\tau)$이 얻어짐
- 푸리에 전개 $\Delta(\tau)=\sum_{n=1}^{\infty}\tau(n)q^n$로부터 얻어지는 계수 $\tau(n)$를 라마누잔의 타우 함수라 하며, 이는 많은 흥미로운 수론적 성질을 가짐
판별식 함수
타원곡선의 판별식
- \(\tau\in \mathbb H\) 에 대응되는 타원곡선 \(y^2=4x^3-g_2(\tau)x-g_3(\tau)\) 의 판별식은 다음과 주어짐
\[F(\tau)=g_2(\tau)^3-27g_3^2(\tau)\] 여기서 \(g_2, g_3\)는 아이젠슈타인 급수(Eisenstein series)
- 정의에 따라 \(F\)는 weight 12인 모듈라 형식이 됨
- 한편, \(g_2(i\infty)=4\pi^4/3\), \(g_3(i\infty)=8\pi^6/27\) 이므로,\[F(i\infty)=(\frac{4\pi^4}{3})^3-27(\frac{8\pi^6}{27})^2=0\]
- 따라서 cusp 형식이 됨
- 이 함수의 \(\tau=i\infty\)에서의 푸리에 전개는 다음과 같다
\[F(\tau)=g_2(\tau)^3-27g_3^2(\tau)=(2\pi)^{12}(q-24q+252q^2\cdots)\]
정의
- 판별식 함수를 다음과 같이 정의
\[\Delta(\tau):=\frac{F(\tau)}{(2\pi)^{12}}=\frac{1}{1728}(E_4^3-E_6^2)\] 여기서 \(E_4, E_6\)는 아이젠슈타인 급수(Eisenstein series)
모듈라 성질
- 위에서 이미 언급했듯이, weight 12인 모듈라 형식이 됨
\[\Delta \left( \frac {a\tau+b} {c\tau+d}\right) = \left(c\tau+d\right)^{12} \Delta(\tau)\]
무한곱 표현과 데데킨트 에타함수
- 데데킨트 에타함수\[\eta(\tau) = q^{1/24} \prod_{n=1}^{\infty} (1-q^{n})\] 의 24승으로 주어지는 함수는 weight 12인 cusp 형식이 되므로, 판별식 함수와 같게 됨. 즉,\[\Delta(\tau)=\eta(\tau)^{24}= q\prod_{n>0}(1-q^n)^{24}=q-24q+252q^2+\cdots\]
라마누잔의 타우 함수
- 판별식 함수의 푸리에 급수에 등장하는 계수를 라마누잔의 타우함수로 정의함. 즉,\[\Delta(\tau)=q\prod_{n>0}(1-q^n)^{24}= \sum_{n=1}^{\infty}\tau(n)q^n\]
라마누잔의 추측
- 서로 소인 자연수 \(m,n\) 에 대하여, \(\tau(mn)=\tau(m)\tau(n)\)
- 소수 $p$와 자연수 $r$에 대하여, \(\tau(p^{r + 1}) = \tau(p)\tau(p^r) - p^{11}\tau(p^{r - 1})\)
- 소수 $p$에 대하여 \(|\tau(p)| \leq 2p^{11/2}\)
- 1917년 모델 (Mordell)이 처음 두 성질을 증명
- 1974년 Deligne이 Weil 추측을 증명함으로써 해결됨
헤케 L-급수
- 헤케 L-급수를 다음과 같이 정의
$$ L(\Delta,s):=\sum_{n=1}^{\infty}\frac{\tau(n)}{n^s}, \quad \Re(s)>\frac{13}{2} $$
- 라마누잔 타우 함수의 성질로부터 다음의 무한곱을 얻는다
$$ L(\Delta,s)=\prod_{p}\frac{1}{(1-\tau(p) p^{-s}+p^{11-2s})} $$
Lehmer의 추측
- 모든 \(n\in \mathbb{N}\)에 대하여 \(\tau(n)\neq 0 \)이다
- http://mathoverflow.net/questions/31058/the-vanishing-of-ramanujans-function-taun
- 미해결
메모
- Hecke’s theory of Hecke operators
- Serre’s theory of modular l-adic Galois representations
- Ramanujan-Petersson Conjectures
관련된 항목들
매스매티카 파일 및 계산 리소스
- https://docs.google.com/file/d/0B8XXo8Tve1cxZnNfcFpJNXR4OWM/edit
- http://oeis.org/A000594
- http://aleph.sagemath.org/?q=3a221ddb-d5ba-4c2e-9f0e-7446d8170b21&lang=sage
- http://mathworld.wolfram.com/TauFunction.html
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/Ramanujan_tau_function
- http://en.wikipedia.org/wiki/Ramanujan–Petersson_conjecture
리뷰, 에세이, 강의노트
- Rankin, R. A. 1986. “Fourier Coefficients of Cusp Forms.” Mathematical Proceedings of the Cambridge Philosophical Society 100 (1): 5–29. doi:http://dx.doi.org/10.1017/S030500410006583X.
관련논문
- Lehmer, D.H. The vanishing of Ramanujan’s τ(n), Duke Math. J. 14, 429–433 (1947)
- Mordell, L. J., On Mr. Ramanujan's empirical expansions of modular functions, Cambr. Phil. Soc. Proc. 19, 117-124 (1917)