"리우빌 방정식"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) (→관련논문) |
Pythagoras0 (토론 | 기여) (→관련논문) |
||
11번째 줄: | 11번째 줄: | ||
* Levi, D., L. Martina, and P. Winternitz. ‘Structure Preserving Discretizations of the Liouville Equation and Their Numerical Tests’. arXiv:1504.01953 [math-Ph, Physics:nlin], 8 April 2015. http://arxiv.org/abs/1504.01953. | * Levi, D., L. Martina, and P. Winternitz. ‘Structure Preserving Discretizations of the Liouville Equation and Their Numerical Tests’. arXiv:1504.01953 [math-Ph, Physics:nlin], 8 April 2015. http://arxiv.org/abs/1504.01953. | ||
* Brito, Francisco, Maria Luiza Leite, and Vicente De Souza Neto. Liouville’s Formula Under the Viewpoint of Minimal Surfaces, n.d. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.360.4767 | * Brito, Francisco, Maria Luiza Leite, and Vicente De Souza Neto. Liouville’s Formula Under the Viewpoint of Minimal Surfaces, n.d. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.360.4767 | ||
+ | * Brito, Francisco, and Maria Luiza Leite. ‘Uniqueness and Globality of the Liouville Formula for Entire Solutions of $ {\partial^{2}\log \lambda \over \partial Z \partial \overline Z} + {\lambda \over 2} = 0 $’. Archiv Der Mathematik 80, no. 5 (1 May 2003): 501–6. doi:10.1007/s00013-003-0481-1. | ||
[[분류:미분기하학]] | [[분류:미분기하학]] |
2015년 4월 8일 (수) 22:11 판
메모
사전 형태의 참고자료
관련논문
- Levi, D., L. Martina, and P. Winternitz. ‘Structure Preserving Discretizations of the Liouville Equation and Their Numerical Tests’. arXiv:1504.01953 [math-Ph, Physics:nlin], 8 April 2015. http://arxiv.org/abs/1504.01953.
- Brito, Francisco, Maria Luiza Leite, and Vicente De Souza Neto. Liouville’s Formula Under the Viewpoint of Minimal Surfaces, n.d. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.360.4767
- Brito, Francisco, and Maria Luiza Leite. ‘Uniqueness and Globality of the Liouville Formula for Entire Solutions of $ {\partial^{2}\log \lambda \over \partial Z \partial \overline Z} + {\lambda \over 2} = 0 $’. Archiv Der Mathematik 80, no. 5 (1 May 2003): 501–6. doi:10.1007/s00013-003-0481-1.