"다중 제타 값"의 두 판 사이의 차이
Pythagoras0 (토론 | 기여) 잔글 (→리뷰, 에세이, 강의노트) |
Pythagoras0 (토론 | 기여) (→기타) |
||
36번째 줄: | 36번째 줄: | ||
* 다음이 성립한다 | * 다음이 성립한다 | ||
$$ | $$ | ||
− | 2\zeta(n,1)=n \zeta(n+1)-\sum_{i=1}^{ | + | 2\zeta(n,1)=n \zeta(n+1)-\sum_{i=1}^{n-1}\zeta(n-i)\zeta(i+1) |
$$ | $$ | ||
* 예 | * 예 | ||
$$\zeta(2,1)=\zeta(3)$$ | $$\zeta(2,1)=\zeta(3)$$ | ||
$$\zeta(4,1)=2\zeta(5)-\zeta(2)\zeta(3)$$ | $$\zeta(4,1)=2\zeta(5)-\zeta(2)\zeta(3)$$ | ||
− | |||
==일차독립인 다중 제타 값의 공간== | ==일차독립인 다중 제타 값의 공간== |
2015년 8월 17일 (월) 00:54 판
개요
- 리만제타함수의 다변수 일반화 $\zeta(s_1, \ldots, s_k)$
- $s_i$ 가 양의 정수일 때, 오일러 합이라 불림
- 정수론의 중요한 주제로 물리에서 산란 amplitude 등의 계산에서 등장
정의
- $s_1, \ldots, s_k$가 1보다 큰 정수라 하자
- 다중 제타 값을 다음과 같이 정의
\[ \zeta(s_1, \ldots, s_k) : = \sum_{n_1 > n_2 > \cdots > n_k > 0} \ \frac{1}{n_1^{s_1} \cdots n_k^{s_k}} = \sum_{n_1 > n_2 > \cdots > n_k > 0} \ \prod_{i=1}^k \frac{1}{n_i^{s_i}}, \!\]
- $w=s_1+\cdots+s_k$를 weight, $k$를 depth로 부른다
이중 제타
- 오일러의 공식
$$\zeta(2,1)=\zeta(3)$$
여러 가지 관계식
double shuffle
- 정리
$m,n>1$ 일 때, $$\zeta(m)\zeta(n)=\zeta(m,n)+\zeta(n,m)+\zeta(m+n)$$
- 증명
$$ \zeta(m)\zeta(n)=(\sum_{j}\frac{1}{j^{m}})(\sum_{k}\frac{1}{k^{n}})=\sum_{j>k}\frac{1}{j^mk^n}+\sum_{j=k}\frac{1}{j^mk^n}+\sum_{j<k}\frac{1}{j^mk^n} $$
오일러 분해 공식
- $r,s>1$ 일 때,
$$\zeta(r)\zeta(s)=\sum_{a=0}^{s-1}\binom{a+r-1}{a}\zeta(r+a,s-a)+\sum_{a=0}^{r-1}\binom{a+s-1}{a}\zeta(s+a,r-a)$$
기타
- 다음이 성립한다
$$ 2\zeta(n,1)=n \zeta(n+1)-\sum_{i=1}^{n-1}\zeta(n-i)\zeta(i+1) $$
- 예
$$\zeta(2,1)=\zeta(3)$$ $$\zeta(4,1)=2\zeta(5)-\zeta(2)\zeta(3)$$
일차독립인 다중 제타 값의 공간
- 주어진 무게를 갖는 다중 제타 값이 이루는 벡터 공간의 차원
- $\{a_n\}_{n=1}^{\infty}$를 $a_n = a_{n-2} + a_{n-3}$, $a_0=1, a_1=a_2=0$.
- 이를 파도반 수열이라 하자
- 1, 0, 0, 1, 0, 1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, 37, 49, 65, 86, 114, 151, 200, 265, 351, 465, 616, 816, 1081, 1432, 1897
- Zagier conjectures that a(n+3) is the maximum number of multiple zeta values of weight n > 1 which are linearly independent over the rationals.
테이블
- 추측
주어진 무게 $s$의 다중 제타 값으로 생성되는 $\mathbb{Q}$-벡터 공간은 다음과 같은 기저를 갖는다 \begin{array}{c|c} s & \\ \hline 2 & \zeta_2 \\ 3 & \zeta_3 \\ 4 & \zeta_2^2 \\ 5 & \zeta_5,\zeta_2 \zeta_3 \\ 6 & \zeta_3^2,\zeta_2^3 \\ 7 & \zeta_7,\zeta_2 \zeta_5,\zeta_2^2 \zeta_3 \\ 8 & \zeta_{5,3},\zeta_3 \zeta_5,\zeta_2 \zeta_3^2,\zeta_2^4 \\ 9 & \zeta_9,\zeta_2 \zeta_7,\zeta_2^2 \zeta_5,\zeta_3^3,\zeta_2^3 \zeta_3 \\ 10 & \zeta_{7,3},\zeta_2 \zeta_{5,3},\zeta_3 \zeta_7,\zeta_5^2,\zeta_2 \zeta_3 \zeta_5,\zeta_2^2 \zeta_3^2,\zeta_2^5 \\ \end{array}
메모
- http://math.unice.fr/~brunov/GdT/The%20Algebra%20Of%20Multiple%20Zeta%20Values.pdf
- REFERENCES ON MULTIPLE ZETA VALUES AND EULER SUMS
관련된 항목들
계산 리소스
- https://docs.google.com/file/d/0B8XXo8Tve1cxU0NmSDg0cGNyYmM/edit
- https://oeis.org/A000931
- Multisum
- Anzai, C., and Y. Sumino. ‘Algorithms to Evaluate Multiple Sums for Loop Computations’. arXiv:1211.5204 [hep-Ph, Physics:hep-Th, Physics:math-Ph], 22 November 2012. http://arxiv.org/abs/1211.5204.
사전 형태의 자료
리뷰, 에세이, 강의노트
- Schneps, Leila. ‘ARI, GARI, Zig and Zag: An Introduction to Ecalle’s Theory of Multiple Zeta Values’. arXiv:1507.01534 [math], 6 July 2015. http://arxiv.org/abs/1507.01534.
- Brown, Francis. “Motivic Periods and the Projective Line Minus Three Points.” arXiv:1407.5165 [math], July 19, 2014. http://arxiv.org/abs/1407.5165.
- http://www.math.jussieu.fr/~leila/MIT4B.pdf
- Survey of the theory of multiple zeta values, Leila Schneps
- Pierre Deligne Multizetas, d´aprés Francis Brown, Seminaire Bourbaki, Nr. 1048, Januar 2012, http://www.math.ias.edu/files/deligne/012312MultiZetas.pdf
관련논문
- Broedel, Johannes, Nils Matthes, and Oliver Schlotterer. ‘Relations between Elliptic Multiple Zeta Values and a Special Derivation Algebra’. arXiv:1507.02254 [hep-Th], 8 July 2015. http://arxiv.org/abs/1507.02254.
- Oyama, Kojiro. ‘Ohno’s Relation for Finite Multiple Zeta Values’. arXiv:1506.00833 [math], 2 June 2015. http://arxiv.org/abs/1506.00833.
- Kaneko, Masanobu, and Mika Sakata. ‘On Multiple Zeta Values of Extremal Height’. arXiv:1505.01014 [math], 5 May 2015. http://arxiv.org/abs/1505.01014.
- Zudilin, Wadim. ‘On a Family of Polynomials Related to $\zeta(2,1)=\zeta(3)$’. arXiv:1504.07696 [math-Ph], 28 April 2015. http://arxiv.org/abs/1504.07696.
- Furusho, Hidekazu. “On Relations among Multiple Zeta Values Obtained in Knot Theory.” arXiv:1501.06638 [math], January 26, 2015. http://arxiv.org/abs/1501.06638.
- Brown, Francis. “Multiple Modular Values for SL_2(Z).” arXiv:1407.5167 [math], July 19, 2014. http://arxiv.org/abs/1407.5167.
- Zhao, Jianqiang. “Uniform Approach to Double Shuffle and Duality Relations of Various Q-Analogs of Multiple Zeta Values via Rota-Baxter Algebras.” arXiv:1412.8044 [math], December 27, 2014. http://arxiv.org/abs/1412.8044.
- Zagier, Don. ‘Evaluation of the Multiple Zeta Values zeta(2,...,2,3,2,...,2)’. Annals of Mathematics 175, no. 2 (1 March 2012): 977–1000. doi:10.4007/annals.2012.175.2.11.
- Blümlein, J., D. J. Broadhurst, and J. A. M. Vermaseren. ‘The Multiple Zeta Value Data Mine’. Computer Physics Communications 181, no. 3 (March 2010): 582–625. doi:10.1016/j.cpc.2009.11.007.
- Guo, Li, and Bin Zhang. ‘Renormalization of Multiple Zeta Values’. Journal of Algebra 319, no. 9 (1 May 2008): 3770–3809. doi:10.1016/j.jalgebra.2008.02.003.
- Ihara, Kentaro, Masanobu Kaneko, and Don Zagier. ‘Derivation and Double Shuffle Relations for Multiple Zeta Values’. Compositio Mathematica 142, no. 02 (March 2006): 307–38. doi:10.1112/S0010437X0500182X.