"다중 제타 값"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
78번째 줄: 78번째 줄:
 
===이중 제타 값===
 
===이중 제타 값===
 
$$
 
$$
\begin{array}{c|c}
+
\begin{array}{c|c|c}
  \zeta (2,1) & 1.202056903 \\
+
  \zeta (2,1) & 1.2021 & \zeta (3) \\
  \zeta (2,2) & 0.8117424253 \\
+
  \zeta (2,2) & 0.81174 & \frac{\pi ^4}{120} \\
  \zeta (2,3) & 0.7115661976 \\
+
  \zeta (2,3) & 0.71157 & \frac{9 \zeta (5)}{2}-\frac{\pi ^2 \zeta (3)}{3} \\
  \zeta (2,4) & 0.6745239140 \\
+
  \zeta (2,4) & 0.67452 & \frac{5 \pi ^6}{2268}-\zeta (3)^2 \\
  \zeta (2,5) & 0.6587533876 \\
+
  \zeta (2,5) & 0.65875 & -\frac{\pi ^4 \zeta (3)}{45}+10 \zeta (7)-\frac{2 \pi ^2 \zeta (5)}{3} \\
  \zeta (2,6) & 0.6515651637 \\
+
  \zeta (2,6) & 0.65157 & \frac{\pi ^8}{14175}-\zeta (6,2) \\
  \zeta (3,1) & 0.2705808084 \\
+
\zeta (2,7) & 0.64817 & -\frac{1}{945} 2 \pi ^6 \zeta (3)-\pi ^2 \zeta (7)+\frac{35 \zeta (9)}{2}-\frac{2 \pi ^4 \zeta (5)}{45} \\
  \zeta (3,2) & 0.2288103976 \\
+
  \zeta (3,1) & 0.27058 & \frac{\pi ^4}{360} \\
  \zeta (3,3) & 0.2137988682 \\
+
  \zeta (3,2) & 0.22881 & \frac{1}{2} \left(\pi ^2 \zeta (3)-11 \zeta (5)\right) \\
  \zeta (3,4) & 0.2075050146 \\
+
  \zeta (3,3) & 0.21380 & \frac{\zeta (3)^2}{2}-\frac{\pi ^6}{1890} \\
  \zeta (3,5) & 0.2046611370 \\
+
  \zeta (3,4) & 0.20751 & \frac{\pi ^4 \zeta (3)}{90}+\frac{5 \pi ^2 \zeta (5)}{3}-18 \zeta (7) \\
  \zeta (3,6) & 0.2033231925 \\
+
  \zeta (3,5) & 0.20466 & -4 \zeta (3) \zeta (5)+\frac{5 \zeta (6,2)}{2}+\frac{41 \pi ^8}{75600} \\
  \zeta (4,1) & 0.09655115999 \\
+
  \zeta (3,6) & 0.20332 & \frac{\pi ^6 \zeta (3)}{945}+\frac{\pi ^4 \zeta (5)}{15}+\frac{7 \pi ^2 \zeta (7)}{2}-\frac{85 \zeta (9)}{2} \\
  \zeta (4,2) & 0.08848338245 \\
+
  \zeta (4,1) & 0.096551 & 2 \zeta (5)-\frac{\pi ^2 \zeta (3)}{6} \\
  \zeta (4,3) & 0.08515982253 \\
+
  \zeta (4,2) & 0.088483 & \zeta (3)^2-\frac{4 \pi ^6}{2835} \\
  \zeta (4,4) & 0.08367311302 \\
+
  \zeta (4,3) & 0.085160 & 17 \zeta (7)-\frac{5 \pi ^2 \zeta (5)}{3} \\
  \zeta (4,5) & 0.08297782969 \\
+
  \zeta (4,4) & 0.083673 & \frac{\pi ^8}{113400} \\
  \zeta (4,6) & 0.08264426276 \\
+
  \zeta (4,5) & 0.082978 & \frac{1}{90} \left(-4 \pi ^4 \zeta (5)-525 \pi ^2 \zeta (7)+5625 \zeta (9)\right) \\
  \zeta (5,1) & 0.04053689727 \\
+
  \zeta (5,1) & 0.040537 & \frac{\pi ^6-630 \zeta (3)^2}{1260} \\
  \zeta (5,2) & 0.03857512434 \\
+
  \zeta (5,2) & 0.038575 & \frac{\pi ^4 \zeta (3)}{45}+\frac{5 \pi ^2 \zeta (5)}{6}-11 \zeta (7) \\
  \zeta (5,3) & 0.03770767298 \\
+
  \zeta (5,3) & 0.037708 & 5 \zeta (3) \zeta (5)-\frac{5 \zeta (6,2)}{2}-\frac{7 \pi ^8}{10800} \\
  \zeta (5,4) & 0.03730477856 \\
+
  \zeta (5,4) & 0.037305 & \frac{1}{18} \left(\pi ^4 \zeta (5)+105 \pi ^2 \zeta (7)-1143 \zeta (9)\right) \\
  \zeta (5,5) & 0.03711229713 \\
+
  \zeta (6,1) & 0.018356 & -\frac{\pi ^4 \zeta (3)}{90}+3 \zeta (7)-\frac{\pi ^2 \zeta (5)}{6} \\
 +
\zeta (6,2) & 0.017820 & \zeta (6,2) \\
 +
  \zeta (6,3) & 0.017573 & -\frac{\pi ^4 \zeta (5)}{15}+\frac{83 \zeta (9)}{2}-\frac{7 \pi ^2 \zeta (7)}{2} \\
 
\end{array}
 
\end{array}
 
$$
 
$$
 
 
  
 
==메모==
 
==메모==

2015년 8월 17일 (월) 06:39 판

개요

  • 리만제타함수의 다변수 일반화 $\zeta(s_1, \ldots, s_k)$
  • $s_i$ 가 양의 정수일 때, 오일러 합이라 불림
  • 정수론의 중요한 주제로 물리에서 산란 amplitude 등의 계산에서 등장


정의

  • $s_1\geq 1, \ldots, s_k$가 양의 정수라 하자
  • 다중 제타 값을 다음과 같이 정의

\[ \zeta(s_1, \ldots, s_k) : = \sum_{n_1 > n_2 > \cdots > n_k > 0} \ \frac{1}{n_1^{s_1} \cdots n_k^{s_k}} = \sum_{n_1 > n_2 > \cdots > n_k > 0} \ \prod_{i=1}^k \frac{1}{n_i^{s_i}}, \!\]

  • $w=s_1+\cdots+s_k$를 weight, $k$를 depth로 부른다

이중 제타

  • 오일러의 공식

$$\zeta(2,1)=\zeta(3)$$


여러 가지 관계식

double shuffle

정리

$m,n>1$ 일 때, $$\zeta(m)\zeta(n)=\zeta(m,n)+\zeta(n,m)+\zeta(m+n)$$

증명

$$ \zeta(m)\zeta(n)=(\sum_{j}\frac{1}{j^{m}})(\sum_{k}\frac{1}{k^{n}})=\sum_{j>k}\frac{1}{j^mk^n}+\sum_{j=k}\frac{1}{j^mk^n}+\sum_{j<k}\frac{1}{j^mk^n} $$

오일러 분해 공식

  • $r,s>1$ 일 때,

$$\zeta(r)\zeta(s)=\sum_{a=0}^{s-1}\binom{a+r-1}{a}\zeta(r+a,s-a)+\sum_{a=0}^{r-1}\binom{a+s-1}{a}\zeta(s+a,r-a)$$

$$ \zeta(2) \zeta(3)=\zeta(2,3)+3\zeta(3,2)+6 \zeta(4,1) $$

기타

  • 다음이 성립한다

$$ 2\zeta(n,1)=n \zeta(n+1)-\sum_{i=1}^{n-2}\zeta(n-i)\zeta(i+1) $$

$$ \begin{align} \zeta(2,1)&=\zeta(3) \\ 2\zeta(3,1)&=-\zeta(2)^2+3\zeta(4) \\ \zeta(4,1)&=2\zeta(5)-\zeta(2)\zeta(3) \\ 2\zeta(5,1)&=-\zeta(3)^2-2\zeta(2)\zeta(4)+5\zeta(6) \end{align} $$

일차독립인 다중 제타 값의 공간

  • 주어진 무게를 갖는 다중 제타 값이 이루는 벡터 공간의 차원
  • $\{a_n\}_{n=1}^{\infty}$를 $a_n = a_{n-2} + a_{n-3}$, $a_0=1, a_1=a_2=0$.
  • 이를 파도반 수열이라 하자
  • 1, 0, 0, 1, 0, 1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, 37, 49, 65, 86, 114, 151, 200, 265, 351, 465, 616, 816, 1081, 1432, 1897
  • Zagier conjectures that a(n+3) is the maximum number of multiple zeta values of weight n > 1 which are linearly independent over the rationals.

테이블

추측

주어진 무게 $s$의 다중 제타 값으로 생성되는 $\mathbb{Q}$-벡터 공간은 다음과 같은 기저를 갖는다 \begin{array}{c|c} s & \\ \hline 2 & \zeta_2 \\ 3 & \zeta_3 \\ 4 & \zeta_2^2 \\ 5 & \zeta_5,\zeta_2 \zeta_3 \\ 6 & \zeta_3^2,\zeta_2^3 \\ 7 & \zeta_7,\zeta_2 \zeta_5,\zeta_2^2 \zeta_3 \\ 8 & \zeta_{5,3},\zeta_3 \zeta_5,\zeta_2 \zeta_3^2,\zeta_2^4 \\ 9 & \zeta_9,\zeta_2 \zeta_7,\zeta_2^2 \zeta_5,\zeta_3^3,\zeta_2^3 \zeta_3 \\ 10 & \zeta_{7,3},\zeta_2 \zeta_{5,3},\zeta_3 \zeta_7,\zeta_5^2,\zeta_2 \zeta_3 \zeta_5,\zeta_2^2 \zeta_3^2,\zeta_2^5 \\ \end{array}


테이블

이중 제타 값

$$ \begin{array}{c|c|c} \zeta (2,1) & 1.2021 & \zeta (3) \\ \zeta (2,2) & 0.81174 & \frac{\pi ^4}{120} \\ \zeta (2,3) & 0.71157 & \frac{9 \zeta (5)}{2}-\frac{\pi ^2 \zeta (3)}{3} \\ \zeta (2,4) & 0.67452 & \frac{5 \pi ^6}{2268}-\zeta (3)^2 \\ \zeta (2,5) & 0.65875 & -\frac{\pi ^4 \zeta (3)}{45}+10 \zeta (7)-\frac{2 \pi ^2 \zeta (5)}{3} \\ \zeta (2,6) & 0.65157 & \frac{\pi ^8}{14175}-\zeta (6,2) \\ \zeta (2,7) & 0.64817 & -\frac{1}{945} 2 \pi ^6 \zeta (3)-\pi ^2 \zeta (7)+\frac{35 \zeta (9)}{2}-\frac{2 \pi ^4 \zeta (5)}{45} \\ \zeta (3,1) & 0.27058 & \frac{\pi ^4}{360} \\ \zeta (3,2) & 0.22881 & \frac{1}{2} \left(\pi ^2 \zeta (3)-11 \zeta (5)\right) \\ \zeta (3,3) & 0.21380 & \frac{\zeta (3)^2}{2}-\frac{\pi ^6}{1890} \\ \zeta (3,4) & 0.20751 & \frac{\pi ^4 \zeta (3)}{90}+\frac{5 \pi ^2 \zeta (5)}{3}-18 \zeta (7) \\ \zeta (3,5) & 0.20466 & -4 \zeta (3) \zeta (5)+\frac{5 \zeta (6,2)}{2}+\frac{41 \pi ^8}{75600} \\ \zeta (3,6) & 0.20332 & \frac{\pi ^6 \zeta (3)}{945}+\frac{\pi ^4 \zeta (5)}{15}+\frac{7 \pi ^2 \zeta (7)}{2}-\frac{85 \zeta (9)}{2} \\ \zeta (4,1) & 0.096551 & 2 \zeta (5)-\frac{\pi ^2 \zeta (3)}{6} \\ \zeta (4,2) & 0.088483 & \zeta (3)^2-\frac{4 \pi ^6}{2835} \\ \zeta (4,3) & 0.085160 & 17 \zeta (7)-\frac{5 \pi ^2 \zeta (5)}{3} \\ \zeta (4,4) & 0.083673 & \frac{\pi ^8}{113400} \\ \zeta (4,5) & 0.082978 & \frac{1}{90} \left(-4 \pi ^4 \zeta (5)-525 \pi ^2 \zeta (7)+5625 \zeta (9)\right) \\ \zeta (5,1) & 0.040537 & \frac{\pi ^6-630 \zeta (3)^2}{1260} \\ \zeta (5,2) & 0.038575 & \frac{\pi ^4 \zeta (3)}{45}+\frac{5 \pi ^2 \zeta (5)}{6}-11 \zeta (7) \\ \zeta (5,3) & 0.037708 & 5 \zeta (3) \zeta (5)-\frac{5 \zeta (6,2)}{2}-\frac{7 \pi ^8}{10800} \\ \zeta (5,4) & 0.037305 & \frac{1}{18} \left(\pi ^4 \zeta (5)+105 \pi ^2 \zeta (7)-1143 \zeta (9)\right) \\ \zeta (6,1) & 0.018356 & -\frac{\pi ^4 \zeta (3)}{90}+3 \zeta (7)-\frac{\pi ^2 \zeta (5)}{6} \\ \zeta (6,2) & 0.017820 & \zeta (6,2) \\ \zeta (6,3) & 0.017573 & -\frac{\pi ^4 \zeta (5)}{15}+\frac{83 \zeta (9)}{2}-\frac{7 \pi ^2 \zeta (7)}{2} \\ \end{array} $$

메모


관련된 항목들


계산 리소스

사전 형태의 자료


리뷰, 에세이, 강의노트

관련논문

  • Broedel, Johannes, Nils Matthes, and Oliver Schlotterer. ‘Relations between Elliptic Multiple Zeta Values and a Special Derivation Algebra’. arXiv:1507.02254 [hep-Th], 8 July 2015. http://arxiv.org/abs/1507.02254.
  • Oyama, Kojiro. ‘Ohno’s Relation for Finite Multiple Zeta Values’. arXiv:1506.00833 [math], 2 June 2015. http://arxiv.org/abs/1506.00833.
  • Kaneko, Masanobu, and Mika Sakata. ‘On Multiple Zeta Values of Extremal Height’. arXiv:1505.01014 [math], 5 May 2015. http://arxiv.org/abs/1505.01014.
  • Zudilin, Wadim. ‘On a Family of Polynomials Related to $\zeta(2,1)=\zeta(3)$’. arXiv:1504.07696 [math-Ph], 28 April 2015. http://arxiv.org/abs/1504.07696.
  • Furusho, Hidekazu. “On Relations among Multiple Zeta Values Obtained in Knot Theory.” arXiv:1501.06638 [math], January 26, 2015. http://arxiv.org/abs/1501.06638.
  • Brown, Francis. “Multiple Modular Values for SL_2(Z).” arXiv:1407.5167 [math], July 19, 2014. http://arxiv.org/abs/1407.5167.
  • Zhao, Jianqiang. “Uniform Approach to Double Shuffle and Duality Relations of Various Q-Analogs of Multiple Zeta Values via Rota-Baxter Algebras.” arXiv:1412.8044 [math], December 27, 2014. http://arxiv.org/abs/1412.8044.
  • Zagier, Don. ‘Evaluation of the Multiple Zeta Values zeta(2,...,2,3,2,...,2)’. Annals of Mathematics 175, no. 2 (1 March 2012): 977–1000. doi:10.4007/annals.2012.175.2.11.
  • Blümlein, J., D. J. Broadhurst, and J. A. M. Vermaseren. ‘The Multiple Zeta Value Data Mine’. Computer Physics Communications 181, no. 3 (March 2010): 582–625. doi:10.1016/j.cpc.2009.11.007.
  • Guo, Li, and Bin Zhang. ‘Renormalization of Multiple Zeta Values’. Journal of Algebra 319, no. 9 (1 May 2008): 3770–3809. doi:10.1016/j.jalgebra.2008.02.003.
  • Ihara, Kentaro, Masanobu Kaneko, and Don Zagier. ‘Derivation and Double Shuffle Relations for Multiple Zeta Values’. Compositio Mathematica 142, no. 02 (March 2006): 307–38. doi:10.1112/S0010437X0500182X.