"라마누잔과 파이"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(section '관련논문' updated)
159번째 줄: 159번째 줄:
  
 
==관련논문==
 
==관련논문==
 +
* Jesús Guillera, New proofs of Borwein-type algorithms for Pi, arXiv:1604.00193[math.NT], April 01 2016, http://arxiv.org/abs/1604.00193v1
 
* Cooper, Shaun, and Wadim Zudilin. “Holonomic Alchemy and Series for $1/\pi$.” arXiv:1512.04608 [math], December 14, 2015. http://arxiv.org/abs/1512.04608.
 
* Cooper, Shaun, and Wadim Zudilin. “Holonomic Alchemy and Series for $1/\pi$.” arXiv:1512.04608 [math], December 14, 2015. http://arxiv.org/abs/1512.04608.
 
* Osburn, Robert, and Wadim Zudilin. ‘On the (K.2) Supercongruence of Van Hamme’. arXiv:1504.01976 [math], 8 April 2015. http://arxiv.org/abs/1504.01976.
 
* Osburn, Robert, and Wadim Zudilin. ‘On the (K.2) Supercongruence of Van Hamme’. arXiv:1504.01976 [math], 8 April 2015. http://arxiv.org/abs/1504.01976.

2016년 4월 3일 (일) 22:30 판

개요

  • 라마누잔은 1914년에 다음과 같은 공식을 발표 [RAM1914]\[\frac{1}{\pi}= \frac{2\sqrt2}{9801}\sum_{n=0}^{\infty}\frac{(4n)!(1103+26390n)}{(n!)^{4}396^{4n}}\]
  • Chudnovsky 형제 [CHU88]

\[\frac{426880 \sqrt{10005}}{\pi} = \sum_{k=0}^\infty \frac{(6k)! (13591409 + 545140134k)}{(3k)!(k!)^3 (-640320)^{3k}}\!\]



정의와 미리 알아야 할 것들

\(q=e^{2\pi i \tau}\)

\(\theta_{2}(\tau)= \sum_{n=-\infty}^\infty q^{(n+\frac{1}{2})^2/2}\)

\(\theta_3(\tau)=\sum_{n=-\infty}^\infty q^{n^2/2}\)

\(\theta_{4}(\tau)= \sum_{n=-\infty}^\infty (-1)^n q^{n^2/2}\)

\(k=k(\tau)=\frac{\theta_2^2(\tau)}{\theta_3^2(\tau)}\)

\(K(k) = \int_0^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{1-k^2 \sin^2\theta}}\)

\(E(k) = \int_0^{\frac{\pi}{2}} \sqrt{1-k^2 \sin^2\theta}d\theta\)

\(k'=\sqrt{1-k^2}=\frac{\theta_4^2(\tau)}{\theta_3^2(\tau)}\)

\(K'(k) = K(k')\)

\(E'(k) = E(k')\)

  • 위의 함수들을 이용하여, 양수 \(r\)에 대하여 다음을 정의

\(\lambda^{*}(r):=k(i\sqrt{r})\)

\(\alpha(r):=\frac{E'}{K}-\frac{\pi}{4K^2}\)



singular value function

\[E(k)K'(k)+E'(k)K(k)-K(k)K'(k)=\frac{\pi}{2}\label{leg}\]

  • 타원적분의 성질

\[K'(\lambda^{*}(r))=\sqrt{r}K(\lambda^{*}(r))\label{ell}\]

  • \ref{leg}와 \ref{ell}로부터 다음을 얻는다

\[\alpha(r)=\frac{\pi}{4K^2}-\sqrt{r}(\frac{E}{K}-1)\]

  • 여기에 타원적분이 만족시키는 미분방정식

\[\frac{dK}{dk}=\frac{E-k'^2K}{kk'^2}\] 을 사용하면 \[\alpha(r)=\frac{1}{\pi}(\frac{\pi}{2K})^2-\sqrt{r}(kk'^2\frac{\dot{K}}{K}-k^2)\] 를 얻게 되고, 이를 다시 쓰면 \[\frac{1}{\pi}=\sqrt{N}k_Nk'^2_N\frac{4K\dot{K}}{\pi^2}+[\alpha(N)-\sqrt{N}k^2_N]\frac{4K^2}{\pi^2}\]


  • \([\frac{2}{\pi}K(k)]^2 =m(k)F(y(k))\) 꼴로 쓰여질때, 양변을 미분하면 다음을 얻는다\[\frac{4K\dot{K}}{\pi^2}=\frac{1}{2}\dot{m}F+\frac{1}{2}m\dot{y}\dot{F}(y)\]
  • 초기하급수를 다음과 같이 쓰면

\[F(y)=\sum_{n=0}^{\infty}a_ny^n\] 다음을 얻는다 \[\frac{1}{\pi}=\sum_{n=0}^\infty a_n[\frac{\sqrt{N}}{2}k{k'}^2\dot{m}+[\alpha(N)-\sqrt{N}k^2_N]m+\frac{n\sqrt{N}}{2}m\frac{\dot{y}}{y}kk'^2]y^n\]



라마누잔 파이 공식의 유도

  • 아래의 prop, thm 번호는 [BB1998] 참조
  • 초기하급수(Hypergeometric series) 항목의 Clausen 항등식이 중요하게 사용됨
  • prop 5.6\[\frac{2}{\pi}K_s(h) = \,_2F_1(\frac{1}{4}-\frac{s}{2},\frac{1}{4}+\frac{s}{2};1;(2hh')^2)\]\[[\frac{2}{\pi}K_s(h)]^2 = \,_2F_1(\frac{1}{2}-s,\frac{1}{2}+s,\frac{1}{2};1,1;(2hh')^2)\]
  • prop 5.7\[K_{1/4}(h)=(1+k^2)^{1/2}K(k)\] if \(2hh'=[\frac{g^{12}+g^{-12}}{2}]^{-1}\)
  • Thm 5.6\[\frac{2}{\pi}K(k) =(1+k^2)^{-1/2} \,_2F_1(\frac{1}{8},\frac{3}{8};1;[\frac{g^{12}+g^{-12}}{2}]^{-2})\]
  • Thm 5.7\[[\frac{2}{\pi}K(k)]^2 =(1+k^2)^{-1} \,_3F_2(\frac{1}{4},\frac{3}{4},\frac{1}{2};1,1;[\frac{g^{12}+g^{-12}}{2}]^{-2})\]
  • (5.5.16)\[\frac{1}{\pi}=\sum_{n=0}^{\infty}\frac{(\frac{1}{4})_n(\frac{1}{2})_n(\frac{3}{4})_n}{(n!)^3}d_n(N)x_N^{2n+1}\]\[x_N=(\frac{g_N^{12}+g_N^{-12}}{2})^{-1}\]\[d_n(N)=[\frac{\alpha(N)x_N^{-1}}{1+k_N^2}-\frac{\sqrt{N}}{4}g_N^{-12}]+n\sqrt N(\frac{g_N^{12}-g_N^{-12}}{2})\]


  • \(N=58\) 일 때

\[x_{58}=\frac{1}{99^2}=\frac{1}{9801},\] \[d_n(58)=(1103+26390n)2\sqrt 2\] 에서 다음을 얻는다 \[\frac{1}{\pi}= \frac{2\sqrt2}{9801}\sum_{n=0}^{\infty}\frac{(4n)!(1103+26390n)}{(n!)^{4}396^{4n}}\]



라마누잔의 class invariants

\[g_{58}^2=\frac{\sqrt{29}+5}{2}\]



메모



역사

  • 1910 - 라마누잔이 다음의 공식을 발견

\[\frac{1}{\pi}= \frac{2\sqrt2}{9801}\sum_{n=0}^{\infty}\frac{(4n)!(1103+26390n)}{(n!)^{4}396^{4n}}\]

  • 1985 William Gosper가 이 급수를 이용하여 \(\pi\)값을 1700만 자리까지 계산
  • 수학사 연표



관련된 항목들



매스매티카 파일 및 계산 리소스


사전 형태의 자료

관련도서

  • [BB1998]Pi and the AGM
    • Jonathan M. Borwein, Peter B. Borwein, Wiley-Interscience (July 13, 1998)



리뷰논문, 에세이, 강의노트



관련논문

관련기사

  • The Mountains of Pi
    • The New Yorker, 1992-3-2