"Lieb-Liniger delta Bose gas"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
89번째 줄: 89번째 줄:
  
 
 
 
 
 +
 +
* [http://dx.doi.org/10.1063/1.1664947 Thermodynamics of a One‐Dimensional System of Bosons with Repulsive Delta‐Function Interaction]<br>
 +
** C. N. Yang and C. P. Yang, J. Math. Phys. 10, 1115 (1969)
 +
* [http://dx.doi.org/10.1103/PhysRevLett.19.1312 Some exact results for the many-body problem in one dimension with repulsive delta-function interaction]<br>
 +
** C.N. Yang, Phys. Rev. Lett. 19 (1967), 1312-1315
 +
* [http://link.aps.org/doi/10.1103/PhysRev.130.1605 Exact Analysis of an Interacting Bose Gas. I. The General Solution and the Ground State]<br>
 +
** Elliott H. Lieb and Werner Liniger, 1963
  
 
* http://www.ams.org/mathscinet
 
* http://www.ams.org/mathscinet

2012년 8월 26일 (일) 13:19 판

introduction
  • N bosons interacting on a line of length L via the delta function potential
  • one-dimensional Bose gas
  • 1963 Lieb and Liniger solved by Bethe ansatz

 

 

 

Hamiltonian
  • quantum mechanical Hamiltonian
    \(H=-\sum_{j=1}^{N}\frac{\partial^2}{\partial x_j^2}+2c\sum_{1\leq i<j\leq N}^{N}\delta(x_i-x_j)\)

 

 

 

two-body scattering term
  • \(s_{ab}=k_a-k_b+ic\)

 

 

Bethe-ansatz equation

\(\exp(ik_jL)=\prod_{l=1}^{N}\frac{k_j-k_l+ic}{k_j-k_l-ic}\)

 

 

energy spectrum

\(E=\sum_{j=1}^{N}k_j^2\)

 

 

 

history

 

 

related items

 

 

encyclopedia

 

 

books

 

[[4909919|]]

 

 

articles

 

 

 

question and answers(Math Overflow)

 

 

blogs

 

 

experts on the field

 

 

links