"Lieb-Liniger delta Bose gas"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
1번째 줄: 1번째 줄:
 
==introduction==
 
==introduction==
  
*  N bosons interacting on a line of length L via the delta function potential<br>
+
*  N bosons interacting on the line $[0,L]$ of length L via the delta function potential<br>
 
*  one-dimensional Bose gas<br>
 
*  one-dimensional Bose gas<br>
 
*  1963 Lieb and Liniger solved by [[Bethe ansatz]]<br>
 
*  1963 Lieb and Liniger solved by [[Bethe ansatz]]<br>
12번째 줄: 12번째 줄:
 
:<math>H=-\sum_{j=1}^{N}\frac{\partial^2}{\partial x_j^2}+2c\sum_{1\leq i<j\leq N}^{N}\delta(x_i-x_j)</math><br>
 
:<math>H=-\sum_{j=1}^{N}\frac{\partial^2}{\partial x_j^2}+2c\sum_{1\leq i<j\leq N}^{N}\delta(x_i-x_j)</math><br>
 
 
 
 
 +
 +
 +
==wave function==
 +
* $\psi(x_1, x_2, \dots, x_j, \dots,x_N)$
 +
* $\psi(x_1, \dots, x_N) =  \sum_P a(P)\exp \left( i \sum_{j=1}^N k_{Pj} x_j\right)$
 +
$$
 +
a(P) = \prod\nolimits_{1\leq i<j \leq N}\left(1+\frac{ic}{k_{Pi}  -k_{Pj}}\right) \ .
 +
$$
 +
  
 
==two-body scattering term==
 
==two-body scattering term==

2013년 3월 4일 (월) 16:05 판

introduction

  • N bosons interacting on the line $[0,L]$ of length L via the delta function potential
  • one-dimensional Bose gas
  • 1963 Lieb and Liniger solved by Bethe ansatz

 

Hamiltonian

  • quantum mechanical Hamiltonian

\[H=-\sum_{j=1}^{N}\frac{\partial^2}{\partial x_j^2}+2c\sum_{1\leq i<j\leq N}^{N}\delta(x_i-x_j)\]
 


wave function

  • $\psi(x_1, x_2, \dots, x_j, \dots,x_N)$
  • $\psi(x_1, \dots, x_N) = \sum_P a(P)\exp \left( i \sum_{j=1}^N k_{Pj} x_j\right)$

$$ a(P) = \prod\nolimits_{1\leq i<j \leq N}\left(1+\frac{ic}{k_{Pi} -k_{Pj}}\right) \ . $$


two-body scattering term

  • \(s_{ab}=k_a-k_b+ic\)


Bethe-ansatz equation

\[\exp(ik_jL)=\prod_{l=1}^{N}\frac{k_j-k_l+ic}{k_j-k_l-ic}\]

 

energy spectrum

  • energy of a Bethe state

\[E=\sum_{j=1}^{N}k_j^2\]

 

related items

 

computational resource

encyclopedia


articles