"Umbral moonshine"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
44번째 줄: 44번째 줄:
  
 
==umbral groups==
 
==umbral groups==
 
+
\begin{array}{l|l|l|I|I}
 +
  \ell & 2 & 3 & 4 & 5 & 7 & 9 \\
 +
\hline
 +
G & M_{24} & M_{12} & &  & &\\
 +
\overline{G} & M_{24} & 2.M_{12} & &  \\
 +
\end{array}
  
 
==umbral moonshine conjecture==
 
==umbral moonshine conjecture==

2013년 8월 5일 (월) 04:16 판

introduction

  • $k\in \{1,2,3,4,6,8\}$ or $\ell=k+1\in \{2,3,4,5,7,9\}$

$$ \frac{24}{\ell-1}-1\in \{23,11,7,5,3,2\} $$

  • properties
    • primes dividing $|M_{24}|$
    • $(p+1)|24$
    • $\rm{PSL}(2,\mathbb{F}_p)\subset M_{24}$

$k=1$


$k=2$

  • $k=2$ moonshine with $2.M_{12}$
  • decomposition of $\varphi^{(3)}=\left(\varphi_{0,1}(\tau,z)^2-E_{4}\varphi_{-2,1}(\tau,z)^2\right)/24$


Jacobi form

$$ \varphi_{0,1}(\tau,z)=4\left[\left(\frac{\theta_{10}(z;\tau)}{\theta_{10}(0;\tau)}\right)+\left(\frac{\theta_{00}(z;\tau)}{\theta_{00}(0;\tau)}\right)+\left(\frac{\theta_{01}(z;\tau)}{\theta_{01}(0;\tau)}\right)\right],\\ \varphi_{-2,1}(\tau,z)=\frac{-\theta_{11}(z;\tau)^2}{\eta(\tau)^6} $$


$\mathcal{N}=4$ super conformal algebra

  • $c=6k$, $k\in \mathbb{Z}_{\geq 1}$
  • two types of representations : BPS and non-BPS


extremal Jacobi forms

mock modular form

umbral forms

  • $H^{(\ell)}=(H_r^{\ell})_{1\leq r \leq \ell-1}$ is a vector valued mock modular form

umbral groups

\begin{array}{l|l|l|I|I} \ell & 2 & 3 & 4 & 5 & 7 & 9 \\ \hline G & M_{24} & M_{12} & & & &\\ \overline{G} & M_{24} & 2.M_{12} & & \\ \end{array}

umbral moonshine conjecture

related items


computational resource


expositions