Characters of superconformal algebra and mock theta functions

수학노트
둘러보기로 가기 검색하러 가기

introduction

\(\mathcal{N}=4\) superconformal algebra

generators and relations

\[[L_m,L_n]=(m-n)L_{m+n}+\frac{c}{12}(m^3-m)\delta_{m+n}\]

\[[J_m^i,J_n^j]=\epsilon_{ijk}J_{m+n}^k+\delta_{m+n}\delta^{i,j}\frac{c}{3},\quad i,j,k\in \{1,2,3\},\quad m,n\in \mathbb{Z}\] \[[L_m,J_n^i]=-nJ_{m+n}^i,\quad m,n\in \mathbb{Z}\]

  • fermionic operators

\[ G_r^a,\overline{G}_s^b,\quad a,b\in \{1,2\} \]

\(c=6k\) with \(k=1\) case

  • non-BPS characters \[h>k/4,\ell=1/2\]

\[ \operatorname{ch}^{\tilde R}_{h=1/4+n,\ell=0}=q^{h-3/8}\frac{[\theta_{11}(z;\tau)]^2}{\eta^3}=q^{n-1/8}\frac{[\theta_{11}(z;\tau)]^2}{\eta^3} \]

  • BPS characters \[h=1/4,\ell=0,1/2\]

\[ \operatorname{ch}^{\tilde R}_{h=1/4,\ell=0}=\frac{[\theta_{11}(z;\tau)]^2}{\eta^3}\mu(z;\tau)\\ \operatorname{ch}^{\tilde R}_{h=1/4,\ell=1/2}+2\operatorname{ch}^{\tilde R}_{h=1/4,\ell=0}=q^{-1/8}\frac{[\theta_{11}(z;\tau)]^2}{\eta^3} \] where \(\mu(z;\tau)\) is the Appell-Lerch sums which is a holomorphic part of a mock modular form


\(k\geq 2\) case

  • this is related to Umbral moonshine and elliptic genus of hyperKahler manifolds of complex dimension \(2k\)




history



related items


encyclopedia


articles

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'n'}, {'LOWER': '='}, {'LOWER': '2'}, {'LOWER': 'superconformal'}, {'LEMMA': 'algebra'}]