"Umbral moonshine"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
10번째 줄: 10번째 줄:
 
===$k=1$===
 
===$k=1$===
 
* [[Mathieu moonshine]] corresponds to $k=1$ case
 
* [[Mathieu moonshine]] corresponds to $k=1$ case
* decomposition of $\varphi_{0,1}(\tau,z)$
+
* decomposition of $Z_{K3}=2\varphi_{0,1}(\tau,z)$
  
  
16번째 줄: 16번째 줄:
 
===$k=2$===
 
===$k=2$===
 
* $k=2$ moonshine with $2.M_{12}$
 
* $k=2$ moonshine with $2.M_{12}$
* decomposition of $\varphi^{(3)}=\left(\varphi_{0,1}(\tau,z)^2-E_{4}\varphi_{-2,1}(\tau,z)^2\right)/24$
+
* decomposition of weight 0 and index 2 Jacobi forms
 +
$$
 +
Z_{X_2^{(1)}}=\left(\varphi_{0,1}(\tau,z)^2+E_{4}\varphi_{-2,1}(\tau,z)^2\right),
 +
$$
 +
$$Z_{X_2^{(2)}}=\varphi^{(3)}=\left(\varphi_{0,1}(\tau,z)^2-E_{4}\varphi_{-2,1}(\tau,z)^2\right)/24$$
  
  
38번째 줄: 42번째 줄:
  
 
==mock modular form==
 
==mock modular form==
 +
* [[Mock modular forms]]
  
  
 
==umbral forms==
 
==umbral forms==
 
* $H^{(\ell)}=(H_r^{\ell})_{1\leq r \leq \ell-1}$ is a vector valued mock modular form
 
* $H^{(\ell)}=(H_r^{\ell})_{1\leq r \leq \ell-1}$ is a vector valued mock modular form
 +
* $H^{(2)}$ is a mock modular form with shadow $24\eta(\tau)^3$
 +
  
 
==umbral groups==
 
==umbral groups==
48번째 줄: 55번째 줄:
 
\hline
 
\hline
 
  G & M_{24} & M_{12} & &  & &\\
 
  G & M_{24} & M_{12} & &  & &\\
  \overline{G} & M_{24} & 2.M_{12} & &  \\
+
  \overline{G} & M_{24} & 2.M_{12} & 2.AGL_{3}(2) & GL_2(5)/2 & SL_2(3) & Z/4 \\
 
\end{array}
 
\end{array}
 +
  
 
==umbral moonshine conjecture==
 
==umbral moonshine conjecture==

2013년 8월 5일 (월) 04:28 판

introduction

  • $k\in \{1,2,3,4,6,8\}$ or $\ell=k+1\in \{2,3,4,5,7,9\}$

$$ \frac{24}{\ell-1}-1\in \{23,11,7,5,3,2\} $$

  • properties
    • primes dividing $|M_{24}|$
    • $(p+1)|24$
    • $\rm{PSL}(2,\mathbb{F}_p)\subset M_{24}$

$k=1$

  • Mathieu moonshine corresponds to $k=1$ case
  • decomposition of $Z_{K3}=2\varphi_{0,1}(\tau,z)$


$k=2$

  • $k=2$ moonshine with $2.M_{12}$
  • decomposition of weight 0 and index 2 Jacobi forms

$$ Z_{X_2^{(1)}}=\left(\varphi_{0,1}(\tau,z)^2+E_{4}\varphi_{-2,1}(\tau,z)^2\right), $$ $$Z_{X_2^{(2)}}=\varphi^{(3)}=\left(\varphi_{0,1}(\tau,z)^2-E_{4}\varphi_{-2,1}(\tau,z)^2\right)/24$$


Jacobi form

$$ \varphi_{0,1}(\tau,z)=4\left[\left(\frac{\theta_{10}(z;\tau)}{\theta_{10}(0;\tau)}\right)+\left(\frac{\theta_{00}(z;\tau)}{\theta_{00}(0;\tau)}\right)+\left(\frac{\theta_{01}(z;\tau)}{\theta_{01}(0;\tau)}\right)\right],\\ \varphi_{-2,1}(\tau,z)=\frac{-\theta_{11}(z;\tau)^2}{\eta(\tau)^6} $$


$\mathcal{N}=4$ super conformal algebra

  • $c=6k$, $k\in \mathbb{Z}_{\geq 1}$
  • two types of representations : BPS and non-BPS


extremal Jacobi forms

mock modular form


umbral forms

  • $H^{(\ell)}=(H_r^{\ell})_{1\leq r \leq \ell-1}$ is a vector valued mock modular form
  • $H^{(2)}$ is a mock modular form with shadow $24\eta(\tau)^3$


umbral groups

\begin{array}{l|l|l|I|I} \ell & 2 & 3 & 4 & 5 & 7 & 9 \\ \hline G & M_{24} & M_{12} & & & &\\ \overline{G} & M_{24} & 2.M_{12} & 2.AGL_{3}(2) & GL_2(5)/2 & SL_2(3) & Z/4 \\ \end{array}


umbral moonshine conjecture

related items


computational resource


expositions