"갈루아 이론"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
18번째 줄: 18번째 줄:
 
<h5 style="margin: 0px; line-height: 2em;">풀수 있는 방정식</h5>
 
<h5 style="margin: 0px; line-height: 2em;">풀수 있는 방정식</h5>
  
* [[정오각형]] 항목 중 [[3002548#toc 4|꼭지점의 평면좌표]]에는 <br>
+
* [[정오각형]] 항목 중 [[3002548#toc 4|꼭지점의 평면좌표]]에는 어떻게 방정식 <math>z^4+z^3+z^2+z^1+1=0</math>을 풀 수 있는지가 설명되어 있음<br>
* [[가우스와 정17각형의 작도]] 항목에는 어떻게 정17각형이 자와 컴파스로 작도가능한지에 대한 설명이 있음<br>
+
* [[가우스와 정17각형의 작도]] 항목에는 정17각형이 자와 컴파스로 작도가능한지에 대한 설명이 있음.<br>
* <math>z^{16}+z^{15}+\cdots+z+1=0</math>의 풀이를 반복적인 2차방정식의 풀이로 환원할 수 있음을 보였다.
+
* 이를 위하여 <math>z^{16}+z^{15}+\cdots+z+1=0</math>의 풀이를 반복적인 2차방정식의 풀이로 환원할 수 있음을 보임.
  
* 16차 방정식을 2차방정식 네번 푸는 문제로 바꾸는 것.
+
* 즉, 16차 방정식을 2차방정식 네번 푸는 문제로 바꾸는 것.
 +
 
 +
 
  
 
 
 
 
144번째 줄: 146번째 줄:
 
* http://www.jstor.org/action/doBasicSearch?Query=galois
 
* http://www.jstor.org/action/doBasicSearch?Query=galois
 
* http://dx.doi.org/
 
* http://dx.doi.org/
 +
 +
 
 +
 +
<h5 style="margin: 0px; line-height: 2em;">교양도서</h5>
 +
 +
* [http://www.yes24.com/Goods/FTGoodsView.aspx?goodsNo=140820&CategoryNumber=001001002015004 프랑스 수학자 갈루아 1], [http://www.yes24.com/Goods/FTGoodsView.aspx?goodsNo=140824&CategoryNumber=001001002015004 프랑스 수학자 갈루아 2]<br>
 +
** 톰 펫시니스 저/김연수 역 | 이끌리오
 +
 +
 
  
 
 
 
 

2009년 10월 25일 (일) 16:41 판

이 항목의 스프링노트 원문주소

 

간단한 소개
  • 군론을 통한 체론(field theory)의 이해
  • 대수방정식의 해가 가지고 있는 대칭성을 군을 통해 이해하는데서 탄생
  • 갈루아이론을 통하여 일반적인 5차이상의 방정식의 해는 계수로부터 시작하여 근호와 사칙연산을 통해 표현할 수 없음을 증명할 수 있으며, 왜 그것이 불가능한지를 설명할 수 있음
  • 체확장과 갈루아군의 개념이 필요

 

 

풀수 있는 방정식
  • 정오각형 항목 중 꼭지점의 평면좌표에는 어떻게 방정식 \(z^4+z^3+z^2+z^1+1=0\)을 풀 수 있는지가 설명되어 있음
  • 가우스와 정17각형의 작도 항목에는 왜 정17각형이 자와 컴파스로 작도가능한지에 대한 설명이 있음.
  • 이를 위하여 \(z^{16}+z^{15}+\cdots+z+1=0\)의 풀이를 반복적인 2차방정식의 풀이로 환원할 수 있음을 보임.
  • 즉, 16차 방정식을 2차방정식 네번 푸는 문제로 바꾸는 것.

 

 

  • 다항식

 

 

  • 다항식 \(x^3-2=0\)
  • 체확장 \(K=\mathbb{Q}(\omega, \sqrt[3]{2})\) over \(\mathbb{Q}\)
  • \([K : \mathbb{Q}]=6\)

 

 

방정식의 해가 가진 대칭성
  •  
  • \(\alpha\in\mathbb{\bar{Q}}\) 가 정수계수 방정식 \(a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \cdots + a_1 x + a_0 = 0, a_i \in \mathbb{Z}\)의 해이면, 갈루아군의 원소 \(\sigma\)에 대하여 \(\sigma(\alpha)\) 도 같은 방정식의 해가 된다.
  •  

 

 

갈루아 체확장
  • transitivity와 fixed point free action 또는 \(\text{Gal}(K/F)=|K:F|\)

 

5차방정식에의 응용

\(f(x)=2x^5-5x^4+5\) is the irreducible polynomial of degree 5 over the rationals.

It has two complex and 3 real roots.

This implies the Galois group is \(S_5\).

 

 

 

재미있는 사실

 

 

 

역사

 

 

메모

 

 

관련된 항목들[[리만곡면과 갈루아이론|]]

 

 

수학용어번역

 

 

사전 형태의 자료

 

 

관련논문

 

교양도서

 

 

관련도서 및 추천도서

 

 

관련기사

 

 

블로그