"Modular invariance in math and physics"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
5번째 줄: 5번째 줄:
 
* Kac http://www.ams.org/publications/online-books/hmbrowder-hmbrowder-kac.pdf
 
* Kac http://www.ams.org/publications/online-books/hmbrowder-hmbrowder-kac.pdf
 
* Modular invariance in lattice statistical mechanics http://aflb.ensmp.fr/AFLB-26j/aflb26jp287.pdf
 
* Modular invariance in lattice statistical mechanics http://aflb.ensmp.fr/AFLB-26j/aflb26jp287.pdf
 
 
 
  
 
 
 
 
16번째 줄: 14번째 줄:
 
* [[path integral and moduli space of Riemann surfaces]]<br><math>Z=\sum_{g=0}^{\infty} g_{s}^{-\chi(\Sigma_{g})}Z_{g}=\sum_{g=0}^{\infty} g_{s}^{2g-2}Z_{g}=\frac{1}{g_{s}^2}Z_{0}+g_{s}^{0}Z_{1}+g_{s}^2Z_{2}+\cdtos</math><br>
 
* [[path integral and moduli space of Riemann surfaces]]<br><math>Z=\sum_{g=0}^{\infty} g_{s}^{-\chi(\Sigma_{g})}Z_{g}=\sum_{g=0}^{\infty} g_{s}^{2g-2}Z_{g}=\frac{1}{g_{s}^2}Z_{0}+g_{s}^{0}Z_{1}+g_{s}^2Z_{2}+\cdtos</math><br>
 
* <math>Z_{1}</math> is an integral over <math>M_1 = \mathbb{H}/SL(2,\mathbb{Z})</math> i.e. the fundamental domain.
 
* <math>Z_{1}</math> is an integral over <math>M_1 = \mathbb{H}/SL(2,\mathbb{Z})</math> i.e. the fundamental domain.
 +
* string theory (symmetries, modular g
  
 
 
 
 

2011년 10월 22일 (토) 06:35 판

introduction

 

 

path integral in string theory
  • path integral and moduli space of Riemann surfaces
    \(Z=\sum_{g=0}^{\infty} g_{s}^{-\chi(\Sigma_{g})}Z_{g}=\sum_{g=0}^{\infty} g_{s}^{2g-2}Z_{g}=\frac{1}{g_{s}^2}Z_{0}+g_{s}^{0}Z_{1}+g_{s}^2Z_{2}+\cdtos\)
  • \(Z_{1}\) is an integral over \(M_1 = \mathbb{H}/SL(2,\mathbb{Z})\) i.e. the fundamental domain.
  • string theory (symmetries, modular g

 

 

 

circle method

 

 

 

related items