Path integral and moduli space of Riemann surfaces
둘러보기로 가기
검색하러 가기
introduction
\(Z=\sum_{g=0}^{\infty} g_{s}^{-\chi(\Sigma_{g})}Z_{g}=\sum_{g=0}^{\infty} g_{s}^{2g-2}Z_{g}=\frac{1}{g_{s}^2}Z_{0}+g_{s}^{0}Z_{1}+g_{s}^2Z_{2}+\cdots\)
classical
\(\frac{1}{g_{s}^2}Z_{0}\)
other terms : loop (=quantum ) corrections
Scattering amplitude
\(Z(V_1,\cdots, V_{s},V_{s+1},\cdots, V_{s+p})=\sum_{g=0}^{\infty} g_{s}^{-\chi(\Sigma_{g})}Z_{g}(V_1,\cdots, V_{s},V_{s+1},\cdots, V_{s+p})\)
Polchinski I,5