"Klein-Gordon equation"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
23번째 줄: 23번째 줄:
 
<h5>plane wave solutions</h5>
 
<h5>plane wave solutions</h5>
  
* <math>u(x,t)=Ae^{i(kx-\omega t)}</math> or
+
* <math>u(x,t)=Ae^{i(kx-\omega t)}</math>
 
 
 
 
  
 
 
 
 
32번째 줄: 30번째 줄:
  
 
<h5>Lorentz invariant commutation relation</h5>
 
<h5>Lorentz invariant commutation relation</h5>
 
 
 
 
 
 
  
 
 
 
 
52번째 줄: 46번째 줄:
  
 
* [[sine-Gordon equation]]
 
* [[sine-Gordon equation]]
 
 
 
 
 
 
 
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">encyclopedia</h5>
 
 
* http://en.wikipedia.org/wiki/
 
* http://www.scholarpedia.org/
 
* http://www.proofwiki.org/wiki/
 
* Princeton companion to mathematics([[2910610/attachments/2250873|Companion_to_Mathematics.pdf]])
 
 
 
 
 
 
 
 
<h5>books</h5>
 
 
 
 
 
* [[2010년 books and articles]]<br>
 
* http://gigapedia.info/1/
 
* http://gigapedia.info/1/
 
* http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
 
 
 
 
 
 
 
 
<h5>expositions</h5>
 
 
 
 
 
 
 
 
 
 
 
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">articles</h5>
 
 
 
 
 
* http://www.ams.org/mathscinet
 
* http://www.zentralblatt-math.org/zmath/en/
 
* http://arxiv.org/
 
* http://www.pdf-search.org/
 
* http://pythagoras0.springnote.com/
 
* [http://math.berkeley.edu/%7Ereb/papers/index.html http://math.berkeley.edu/~reb/papers/index.html]
 
* http://dx.doi.org/
 
 
 
 
 
 
 
 
<h5>question and answers(Math Overflow)</h5>
 
 
* http://mathoverflow.net/search?q=
 
* http://mathoverflow.net/search?q=
 
 
 
 
 
 
 
 
<h5>blogs</h5>
 
 
*  구글 블로그 검색<br>
 
**  http://blogsearch.google.com/blogsearch?q=<br>
 
** http://blogsearch.google.com/blogsearch?q=
 
* http://ncatlab.org/nlab/show/HomePage
 
 
 
 
 
 
 
 
<h5>experts on the field</h5>
 
 
* http://arxiv.org/
 
 
 
 
 
 
 
 
<h5>links</h5>
 
 
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier]
 
* [http://pythagoras0.springnote.com/pages/1947378 수식표현 안내]
 
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]
 
* http://functions.wolfram.com/
 

2012년 2월 22일 (수) 11:16 판

introduction
  • free massive scalar field which describes the spin-0 particles
  • in condensed matter physics it describes long wavelength optical phonons
  • formulated as a relativistic generalization of Schrodinger equation
  • there are real KG equation and complex KG equation
    • real case describes electrically neutral particles
    • complex case describes charged particles
  • \((\Box + m^2) \psi = 0\) i.e. \((\Box + m^2) \psi =\psi_{tt}-\psi_{xx}-\psi_{yy}-\psi_{zz}+m^2\psi=0\)
  • people found 2 problems of KG equations
    • negative energy states
    • negative probability density
  • correct interpretations of \(\phi\) requires the idea of quantum field rather than the particle wavefunction
    • negative probability density -> charge density
  • Dirac suggested Dirac sea by invoking the exclusion principle and then KG equation only applicable to spinless particles
    • for example, \(\pi\)-meson
  • Thus the Dirac equation comes in to deal with spin-\(1/2\) particles.

 

 

plane wave solutions
  • \(u(x,t)=Ae^{i(kx-\omega t)}\)

 

 

Lorentz invariant commutation relation

 

 

history

 

 

related items