"Klein-Gordon equation"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
잔글 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로)
imported>Pythagoras0
잔글 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로)
5번째 줄: 5번째 줄:
 
 
 
 
  
==introduction</h5>
+
==introduction==
  
 
* in condensed matter physics it describes long wavelength optical phonons
 
* in condensed matter physics it describes long wavelength optical phonons
22번째 줄: 22번째 줄:
 
 
 
 
  
==Lorentz invariant commutation relation</h5>
+
==Lorentz invariant commutation relation==
  
 
 
 
 
30번째 줄: 30번째 줄:
 
 
 
 
  
==related items</h5>
+
==related items==
  
 
* [[special and general relativity]]
 
* [[special and general relativity]]
 
* [[sine-Gordon equation]]
 
* [[sine-Gordon equation]]

2012년 10월 28일 (일) 14:30 판

 

 

introduction

  • in condensed matter physics it describes long wavelength optical phonons
  • there are real KG equation and complex KG equation
    • real case describes electrically neutral particles
    • complex case describes charged particles
  • \((\Box + m^2) \psi = 0\) i.e. \((\Box + m^2) \psi =\psi_{tt}-\psi_{xx}-\psi_{yy}-\psi_{zz}+m^2\psi=0\)
  • correct interpretations of \(\phi\) requires the idea of quantum field rather than the particle wavefunction
    • negative probability density -> charge density
  • Dirac suggested Dirac sea by invoking the exclusion principle and then KG equation only applicable to spinless particles
    • for example, \(\pi\)-meson
  • Thus the Dirac equation comes in to deal with spin-\(1/2\) particles.

 

 

Lorentz invariant commutation relation

 

 

 

related items