"Klein-Gordon equation"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 잔글 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로) |
imported>Pythagoras0 잔글 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로) |
||
5번째 줄: | 5번째 줄: | ||
− | ==introduction | + | ==introduction== |
* in condensed matter physics it describes long wavelength optical phonons | * in condensed matter physics it describes long wavelength optical phonons | ||
22번째 줄: | 22번째 줄: | ||
− | ==Lorentz invariant commutation relation | + | ==Lorentz invariant commutation relation== |
30번째 줄: | 30번째 줄: | ||
− | ==related items | + | ==related items== |
* [[special and general relativity]] | * [[special and general relativity]] | ||
* [[sine-Gordon equation]] | * [[sine-Gordon equation]] |
2012년 10월 28일 (일) 14:30 판
introduction
- in condensed matter physics it describes long wavelength optical phonons
- there are real KG equation and complex KG equation
- real case describes electrically neutral particles
- complex case describes charged particles
- \((\Box + m^2) \psi = 0\) i.e. \((\Box + m^2) \psi =\psi_{tt}-\psi_{xx}-\psi_{yy}-\psi_{zz}+m^2\psi=0\)
- correct interpretations of \(\phi\) requires the idea of quantum field rather than the particle wavefunction
- negative probability density -> charge density
- Dirac suggested Dirac sea by invoking the exclusion principle and then KG equation only applicable to spinless particles
- for example, \(\pi\)-meson
- Thus the Dirac equation comes in to deal with spin-\(1/2\) particles.
Lorentz invariant commutation relation