"감마함수의 비와 라마누잔의 연분수"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) |
|||
1번째 줄: | 1번째 줄: | ||
− | |||
− | + | ||
− | + | ==개요== | |
− | + | * 감마함수의 비를 다음과 같이 연분수로 표현가능 :<math>\frac{\Gamma \left(\frac{1}{4} (-n+x+1)\right) \Gamma \left(\frac{1}{4} (n+x+1)\right)}{\Gamma \left(\frac{1}{4} (-n+x+3)\right) \Gamma \left(\frac{1}{4} (n+x+3)\right)}=\cfrac{4}{x-\cfrac{n^2-1}{2 x-\cfrac{n^2-9}{2 x-\cfrac{n^2-25}{2 x-\cfrac{n^2-49}{2 x-\cfrac{n^2-81}{2 x-\cfrac{n^2-121}{2 x-\cfrac{n^2-169}{2 x-\cfrac{n^2-225}{2 x-\cfrac{n^2-289}{2 x-\cdots}}}}}}}}}}</math><br> | |
+ | * <math>n=0, x=1</math> 인 경우, [[원주율과 연분수 Brouncker 의 공식]] 을 얻는다<br><math>\frac \pi 4 = \cfrac{1}{1+\cfrac{1^2}{2+\cfrac{3^2}{2+\cfrac{5^2}{2+\cfrac{7^2}{2+\cfrac{9^2}{2+\ddots}}}}}}</math><br> | ||
− | + | ||
− | + | ||
− | |||
− | + | ==감마함수와 무한곱== | |
− | |||
− | |||
− | |||
− | |||
* [[감마함수]]<br><math>\Gamma(z) = \lim_{n \to \infty} \frac{n! \; n^z}{z \; (z+1)\cdots(z+n)} </math><br> | * [[감마함수]]<br><math>\Gamma(z) = \lim_{n \to \infty} \frac{n! \; n^z}{z \; (z+1)\cdots(z+n)} </math><br> | ||
26번째 줄: | 21번째 줄: | ||
* [[월리스 곱 (Wallis product formula)]]<br><math>\prod_{k=1}^{\infty}{\frac{4k^2-1}{4k^2}=\frac{2}{\pi}</math><br> | * [[월리스 곱 (Wallis product formula)]]<br><math>\prod_{k=1}^{\infty}{\frac{4k^2-1}{4k^2}=\frac{2}{\pi}</math><br> | ||
− | + | ||
− | + | ==역사== | |
* [[수학사연표 (역사)|수학사연표]] | * [[수학사연표 (역사)|수학사연표]] | ||
− | + | ||
− | + | ||
− | + | ==메모== | |
'''[Alladi&Gordon1993] 277-278p''' | '''[Alladi&Gordon1993] 277-278p''' | ||
48번째 줄: | 43번째 줄: | ||
* Math Overflow http://mathoverflow.net/search?q= | * Math Overflow http://mathoverflow.net/search?q= | ||
− | + | ||
− | + | ||
− | + | ==관련된 항목들== | |
* [[초기하함수 2F1의 contiguous 관계]] | * [[초기하함수 2F1의 contiguous 관계]] | ||
* [[원주율과 연분수 Brouncker 의 공식]] | * [[원주율과 연분수 Brouncker 의 공식]] | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ==수학용어번역== | |
* 단어사전<br> | * 단어사전<br> | ||
** http://translate.google.com/#en|ko| | ** http://translate.google.com/#en|ko| | ||
** http://ko.wiktionary.org/wiki/ | ** http://ko.wiktionary.org/wiki/ | ||
− | * | + | * 발음사전 http://www.forvo.com/search/ |
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br> | * [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br> | ||
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr= | ** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr= | ||
* [http://www.kss.or.kr/pds/sec/dic.aspx 한국통계학회 통계학 용어 온라인 대조표] | * [http://www.kss.or.kr/pds/sec/dic.aspx 한국통계학회 통계학 용어 온라인 대조표] | ||
* [http://www.nktech.net/science/term/term_l.jsp?l_mode=cate&s_code_cd=MA 남·북한수학용어비교] | * [http://www.nktech.net/science/term/term_l.jsp?l_mode=cate&s_code_cd=MA 남·북한수학용어비교] | ||
− | * [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 | + | * [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판] |
− | + | ||
− | + | ||
− | + | ||
− | + | ==사전 형태의 자료== | |
* http://ko.wikipedia.org/wiki/ | * http://ko.wikipedia.org/wiki/ | ||
89번째 줄: | 84번째 줄: | ||
* [http://eqworld.ipmnet.ru/ The World of Mathematical Equations] | * [http://eqworld.ipmnet.ru/ The World of Mathematical Equations] | ||
− | + | ||
− | + | ||
− | + | ==리뷰논문, 에세이, 강의노트== | |
− | + | ||
− | + | ||
− | + | ||
− | + | ==관련논문== | |
* http://www.jstor.org/action/doBasicSearch?Query= | * http://www.jstor.org/action/doBasicSearch?Query= | ||
107번째 줄: | 102번째 줄: | ||
* http://dx.doi.org/ | * http://dx.doi.org/ | ||
− | + | ||
− | + | ||
− | + | ==관련도서== | |
* 도서내검색<br> | * 도서내검색<br> | ||
** http://books.google.com/books?q= | ** http://books.google.com/books?q= | ||
** http://book.daum.net/search/contentSearch.do?query= | ** http://book.daum.net/search/contentSearch.do?query= |
2012년 10월 30일 (화) 02:24 판
개요
- 감마함수의 비를 다음과 같이 연분수로 표현가능 \[\frac{\Gamma \left(\frac{1}{4} (-n+x+1)\right) \Gamma \left(\frac{1}{4} (n+x+1)\right)}{\Gamma \left(\frac{1}{4} (-n+x+3)\right) \Gamma \left(\frac{1}{4} (n+x+3)\right)}=\cfrac{4}{x-\cfrac{n^2-1}{2 x-\cfrac{n^2-9}{2 x-\cfrac{n^2-25}{2 x-\cfrac{n^2-49}{2 x-\cfrac{n^2-81}{2 x-\cfrac{n^2-121}{2 x-\cfrac{n^2-169}{2 x-\cfrac{n^2-225}{2 x-\cfrac{n^2-289}{2 x-\cdots}}}}}}}}}}\]
- \(n=0, x=1\) 인 경우, 원주율과 연분수 Brouncker 의 공식 을 얻는다
\(\frac \pi 4 = \cfrac{1}{1+\cfrac{1^2}{2+\cfrac{3^2}{2+\cfrac{5^2}{2+\cfrac{7^2}{2+\cfrac{9^2}{2+\ddots}}}}}}\)
감마함수와 무한곱
- 감마함수
\(\Gamma(z) = \lim_{n \to \infty} \frac{n! \; n^z}{z \; (z+1)\cdots(z+n)} \)
\(1+{q \over 1+q + } {q^2 \over 1+q^2+} {q^3 \over 1+q^3} } \cdots=\frac{(q^2;q^4)_{\infty}^2}{(q^1;q^4)_{\infty}(q^3;q^4)_{\infty}}\) 로부터
\(\frac{\Gamma(\frac{1}{4})\Gamma(\frac{3}{4})}{\Gamma(\frac{2}{4})\Gamma(\frac{2}{4})}=\sqrt{2}\)
- 월리스 곱 (Wallis product formula)
\(\prod_{k=1}^{\infty}{\frac{4k^2-1}{4k^2}=\frac{2}{\pi}\)
역사
메모
[Alladi&Gordon1993] 277-278p
Partition identities and a continued fraction of Ramanujan
\(R(a,b)=\frac{f(a,a^{-1}b)}{f(aq,a^{-1}b)}-a=\frac{R^{N}(a,b)}{R^{D}(a,b)}=1+\frac{bq}{1+aq} {\ \atop+} \frac{bq^2}{1+aq^2}{\ \atop+} \frac{bq^3}{1} {\ \atop+\dots}\)
\(R(1,1)=\frac{R^{N}(1,1)}{R^{D}(1,1)}=1+{q \over 1+q + } {q^2 \over 1+q^2+} {q^3 \over 1+q^3} } \cdots=\frac{(q^2;q^4)_{\infty}^2}{(q^1;q^4)_{\infty}(q^3;q^4)_{\infty}}\)
- Math Overflow http://mathoverflow.net/search?q=
관련된 항목들
수학용어번역
- 단어사전
- 발음사전 http://www.forvo.com/search/
- 대한수학회 수학 학술 용어집
- 한국통계학회 통계학 용어 온라인 대조표
- 남·북한수학용어비교
- 대한수학회 수학용어한글화 게시판
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- The Online Encyclopaedia of Mathematics
- NIST Digital Library of Mathematical Functions
- The World of Mathematical Equations
리뷰논문, 에세이, 강의노트
관련논문