"감마함수의 비와 라마누잔의 연분수"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
8번째 줄: 8번째 줄:
  
 
==감마함수와 무한곱==
 
==감마함수와 무한곱==
 +
; 정리
 +
: <math>\frac{\Gamma(\frac{1}{4})\Gamma(\frac{3}{4})}{\Gamma(\frac{2}{4})\Gamma(\frac{2}{4})}=\sqrt{2}</math>
  
* [[감마함수]]<br><math>\Gamma(z) = \lim_{n \to \infty} \frac{n! \; n^z}{z \; (z+1)\cdots(z+n)} </math><br>
+
;증명
 +
[[감마함수]]의 다음 표현 :<math>\Gamma(z) = \lim_{n \to \infty} \frac{n! \; n^z}{z \; (z+1)\cdots(z+n)} </math>과 다음 무한곱의 연분수 표현을 사용하여 얻을 수 있다 :<math>1+{q \over 1+q + } {q^2 \over 1+q^2+} {q^3 \over 1+q^3}  \cdots=\frac{(q^2;q^4)_{\infty}^2}{(q^1;q^4)_{\infty}(q^3;q^4)_{\infty}}</math>
  
<math>1+{q \over 1+q + } {q^2 \over 1+q^2+} {q^3 \over 1+q^3} } \cdots=\frac{(q^2;q^4)_{\infty}^2}{(q^1;q^4)_{\infty}(q^3;q^4)_{\infty}}</math> 로부터
+
* [[월리스 곱 (Wallis product formula)]]:<math>\prod_{k=1}^{\infty}\frac{4k^2-1}{4k^2}=\frac{2}{\pi}</math><br>
 
 
<math>\frac{\Gamma(\frac{1}{4})\Gamma(\frac{3}{4})}{\Gamma(\frac{2}{4})\Gamma(\frac{2}{4})}=\sqrt{2}</math>
 
 
 
* [[월리스 곱 (Wallis product formula)]]<br><math>\prod_{k=1}^{\infty}{\frac{4k^2-1}{4k^2}=\frac{2}{\pi}</math><br>
 
 
 
 
  
 
==역사==
 
==역사==

2012년 10월 30일 (화) 02:33 판


개요

  • 감마함수의 비를 다음과 같이 연분수로 표현가능 \[\frac{\Gamma \left(\frac{1}{4} (-n+x+1)\right) \Gamma \left(\frac{1}{4} (n+x+1)\right)}{\Gamma \left(\frac{1}{4} (-n+x+3)\right) \Gamma \left(\frac{1}{4} (n+x+3)\right)}=\cfrac{4}{x-\cfrac{n^2-1}{2 x-\cfrac{n^2-9}{2 x-\cfrac{n^2-25}{2 x-\cfrac{n^2-49}{2 x-\cfrac{n^2-81}{2 x-\cfrac{n^2-121}{2 x-\cfrac{n^2-169}{2 x-\cfrac{n^2-225}{2 x-\cfrac{n^2-289}{2 x-\cdots}}}}}}}}}}\]
  • \(n=0, x=1\) 인 경우, 원주율과 연분수 Brouncker 의 공식 을 얻는다\[\frac \pi 4 = \cfrac{1}{1+\cfrac{1^2}{2+\cfrac{3^2}{2+\cfrac{5^2}{2+\cfrac{7^2}{2+\cfrac{9^2}{2+\ddots}}}}}}\]

감마함수와 무한곱

정리

\[\frac{\Gamma(\frac{1}{4})\Gamma(\frac{3}{4})}{\Gamma(\frac{2}{4})\Gamma(\frac{2}{4})}=\sqrt{2}\]

증명

감마함수의 다음 표현 \[\Gamma(z) = \lim_{n \to \infty} \frac{n! \; n^z}{z \; (z+1)\cdots(z+n)} \]과 다음 무한곱의 연분수 표현을 사용하여 얻을 수 있다 \[1+{q \over 1+q + } {q^2 \over 1+q^2+} {q^3 \over 1+q^3} \cdots=\frac{(q^2;q^4)_{\infty}^2}{(q^1;q^4)_{\infty}(q^3;q^4)_{\infty}}\] ■

역사



메모

[Alladi&Gordon1993] 277-278p

Partition identities and a continued fraction of Ramanujan

\(R(a,b)=\frac{f(a,a^{-1}b)}{f(aq,a^{-1}b)}-a=\frac{R^{N}(a,b)}{R^{D}(a,b)}=1+\frac{bq}{1+aq} {\ \atop+} \frac{bq^2}{1+aq^2}{\ \atop+} \frac{bq^3}{1} {\ \atop+\dots}\)

\(R(1,1)=\frac{R^{N}(1,1)}{R^{D}(1,1)}=1+{q \over 1+q + } {q^2 \over 1+q^2+} {q^3 \over 1+q^3} } \cdots=\frac{(q^2;q^4)_{\infty}^2}{(q^1;q^4)_{\infty}(q^3;q^4)_{\infty}}\)



관련된 항목들




수학용어번역




사전 형태의 자료



리뷰논문, 에세이, 강의노트

관련논문



관련도서