"3-manifolds and their invariants"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
97번째 줄: 97번째 줄:
 
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">encyclopedia</h5>
 
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">encyclopedia</h5>
  
*  <br>
+
* http://en.wikipedia.org/wiki/Quantum_invariant<br>
 
* http://ko.wikipedia.org/wiki/[http://en.wikipedia.org/wiki/Figure-eight_knot_%28mathematics%29 ]
 
* http://ko.wikipedia.org/wiki/[http://en.wikipedia.org/wiki/Figure-eight_knot_%28mathematics%29 ]
 
* http://en.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/
108번째 줄: 108번째 줄:
 
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">books</h5>
 
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">books</h5>
  
 
+
* http://www.worldscibooks.com/mathematics/4746.html<br>
 
 
 
* [[2010년 books and articles]]<br>
 
* [[2010년 books and articles]]<br>
* http://gigapedia.info/1/
 
* http://gigapedia.info/1/
 
* http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
 
  
 
[[4909919|]]
 
[[4909919|]]
126번째 줄: 122번째 줄:
  
 
*  Arithmetic properties of quantum invariants of manifolds http://www.mathnet.ru/php/presentation.phtml?presentid=3937&option_lang=rus Don Zagier<br>
 
*  Arithmetic properties of quantum invariants of manifolds http://www.mathnet.ru/php/presentation.phtml?presentid=3937&option_lang=rus Don Zagier<br>
*  Christian Blanchet,<br>[http://www.math.jussieu.fr/%7Eblanchet/Articles/EMP_quantum_inv.pdf Quantum Invariants of 3-manifolds]<br>
+
*  Christian Blanchet, Vladimir Turaev [http://www.math.jussieu.fr/%7Eblanchet/Articles/EMP_quantum_inv.pdf Quantum Invariants of 3-manifolds]<br>
  
 
 
 
 

2012년 8월 26일 (일) 18:18 판

introduction
  • volume of knot complements
  • Chern-Simons invariant of manifolds
  • Turaev-Viro invariant (related to 6j symbols)
    • Kauffman and Line 'The Temperley Lie algebra recoupling theory and invariants of 3-manifolds"
    • Turaev-Viro "state sum invariants of 3-manifolds and quantum 6j-symbols)

 

 

maps between threefolds
  • maps between aspherical 3 manifolds
  • aspherical threefolds = second and higher homotopy groups vanish
  • JSJ decomposition http://en.wikipedia.org/wiki/JSJ_decomposition
    • cutting M into
      • Seifert fibered pieces ~ non hyperbolic pieces
      • atoroidal pieces ~ hyperbolic pieces
  • Thurston's geometrization
    • S^3, E\times S^2, Sol
    • E^3, E\times H^2, SL_2
    • H^3, Nil

 

 

Volume of knot complement
  1. KnotData[]
    KnotData["FigureEight", "HyperbolicVolume"]
    N[%, 20]
  • Dedekind zeta funciton evaluated at 2 gives a number related to volume of 3-manifold
  • Bloch-Wigner dilogarithm is involved

 

 

a problem
  • Prove
    \(\frac{24}{7\sqrt{7}}\int_{\pi/3}^{\pi/2}\ln|\frac{\tan t+\sqrt{7}}{\tan t-\sqrt{7}}|\,dt=\frac{2}{\sqrt{7}}(D(e^{2\pi i/7})+D(e^{4\pi i/7})-D(e^{6\pi i/7}))=\frac{2}{\sqrt{7}}(Cl(2\pi /7})+Cl(4\pi/7})-Cl(6\pi/7}))\)
  • a log tangent integral

 

 

Reshetikihn, Turaev

 

 

software

 

 

history

 

 

 

하위페이지

 

 

related items[[4667393|]]

 

 

encyclopedia

 

 

books

[[4909919|]]

 

 

 

expositions

 

 

articles

 

 

question and answers(Math Overflow)

 

 

blogs

 

 

experts on the field

 

 

links