Quantum dilogarithm
둘러보기로 가기
검색하러 가기
introduction
Knot and invariants from quantum dilogarithm
- [Kashaev1995]
- a link invariant, depending on a positive integer parameter N, has been defined via three-dimensional interpretation of the cyclic quantum dilogarithm
- The construction can be considered as an example of the simplicial (combinatorial) version of the three-dimensional TQFT
- this invariant is in fact a quantum generalization of the hyperbolic volume invariant.
- It is possible that the simplicialTQFT, defined in terms of the cyclic quantum dilogarithm, can be associated with quantum 2 + 1-dimensional gravity.
- [Kashaev1995]A link invariant from quantum dilogarithm
- Kashaev, R. M., Modern Phys. Lett. A 10 (1995), 1409–1418
Teschner's version
- \(b\in \R_{>0}\)
- \(G_b(z)\)
- \(G_b(z+Q)=G_b(z)(1-e^{2\pi ib z})(1-e^{2\pi ib^{-1}z})\), where \(Q=b+b^{-1}\)
- Manufacturing matrices from lower ranks
- Fermionic summation formula
- asymptotic analysis of basic hypergeometric series
- Kashaev's volume conjecture
computational resource
- https://drive.google.com/file/d/0B8XXo8Tve1cxQ09YeHM2ellGS1U/view
- http://math-www.uni-paderborn.de/~axel/graphs/
메타데이터
위키데이터
- ID : Q7269036
Spacy 패턴 목록
- [{'LOWER': 'quantum'}, {'LEMMA': 'dilogarithm'}]