"5차방정식의 근의 공식과 아벨의 증명"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
 
(사용자 2명의 중간 판 4개는 보이지 않습니다)
10번째 줄: 10번째 줄:
 
==증명의 개요==
 
==증명의 개요==
  
*  증명은 크게 세 부분으로 구성<br>
+
*  증명은 크게 세 부분으로 구성
**  5차 방정식의 해를 거듭제곱근기호를 써서 표현하는 경우, 근의 공식이 갖는 일반적인 형태<br>
+
**  5차 방정식의 해를 거듭제곱근기호를 써서 표현하는 경우, 근의 공식이 갖는 일반적인 형태
**  거듭제곱근의 기호를 써서 표현할 때 등장하는 수를 방정식의 해의 유리함수로 표현할 수 있다는 사실의 증명<br>
+
**  거듭제곱근의 기호를 써서 표현할 때 등장하는 수를 방정식의 해의 유리함수로 표현할 수 있다는 사실의 증명
**  위의 두 사실 사이의 긴장을 이용하여 모순을 이끌어내는 부분<br>
+
**  위의 두 사실 사이의 긴장을 이용하여 모순을 이끌어내는 부분
  
 
   
 
   
21번째 줄: 21번째 줄:
 
   
 
   
  
* [[3차 방정식의 근의 공식|3차, 4차 방정식의 근의 공식]]:<math>x^3 + px + q = 0</math>:<math>x_1=\sqrt[3]{-\frac{q}{2}+\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}}+\sqrt[3]{-\frac{q}{2}-\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}}</math>:<math>x_2=\left( -\tfrac{1}{2}+\tfrac{\sqrt{3}}{2}i \right)\sqrt[3]{-\frac{q}{2}+\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}}+\left( -\tfrac{1}{2}-\tfrac{\sqrt{3}}{2}i \right)\sqrt[3]{-\frac{q}{2}-\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}}</math>:<math>x_3=\left( -\tfrac{1}{2}-\tfrac{\sqrt{3}}{2}i \right)\sqrt[3]{-\frac{q}{2}+\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}}+\left( -\tfrac{1}{2}+\tfrac{\sqrt{3}}{2}i \right)\sqrt[3]{-\frac{q}{2}-\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}} </math><br>
+
* [[3차 방정식의 근의 공식|3차, 4차 방정식의 근의 공식]]:<math>x^3 + px + q = 0</math>:<math>x_1=\sqrt[3]{-\frac{q}{2}+\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}}+\sqrt[3]{-\frac{q}{2}-\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}}</math>:<math>x_2=\left( -\tfrac{1}{2}+\tfrac{\sqrt{3}}{2}i \right)\sqrt[3]{-\frac{q}{2}+\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}}+\left( -\tfrac{1}{2}-\tfrac{\sqrt{3}}{2}i \right)\sqrt[3]{-\frac{q}{2}-\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}}</math>:<math>x_3=\left( -\tfrac{1}{2}-\tfrac{\sqrt{3}}{2}i \right)\sqrt[3]{-\frac{q}{2}+\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}}+\left( -\tfrac{1}{2}+\tfrac{\sqrt{3}}{2}i \right)\sqrt[3]{-\frac{q}{2}-\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}} </math>
 
 
 
 
 
 
 
 
 
  
 
==근의 공식이 갖는 일반적인 형태의 이해==
 
==근의 공식이 갖는 일반적인 형태의 이해==
  
*  위 [[3차 방정식의 근의 공식|3차, 4차 방정식의 근의 공식]] 을 다른 형태로 표현해 보자:<math>A=\sqrt[3]{-{q\over 2}+ \sqrt{{q^{2}\over 4}+{p^{3}\over 27}}}</math>, <math>B=\sqrt[3]{-\frac{q}{2}-\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}}</math>:<math>A^3=-\frac{q}{2}+\sqrt{\frac{q^2}{4}+\frac{p^3}{27}}</math>, <math>1/A^3=\frac{27}{p^3}\cdot (\frac{q}{2}+\sqrt{\frac{q^2}{4}+\frac{p^3}{27}})</math>:<math>AB=\sqrt[3]{-\frac{p^3}{27}}=-\frac{p}{3}</math>:<math>B=-\frac{p}{3A}=-\frac{pA^2}{3A^3}=-\frac{9(\frac{q}{2}+\sqrt{\frac{q^2}{4}+\frac{p^3}{27}})}{p^2}A^2</math><br> 따라서,:<math>x_1=A+B=A-\frac{9(\frac{q}{2}+\sqrt{\frac{q^2}{4}+\frac{p^3}{27}})}{p^2}A^2</math><br>
+
*  위 [[3차 방정식의 근의 공식|3차, 4차 방정식의 근의 공식]] 을 다른 형태로 표현해 보자
*  거듭제곱근 체확장의 개념을 도입하는 것이 유용하다<br>
+
:<math>A=\sqrt[3]{-{q\over 2}+ \sqrt{{q^{2}\over 4}+{p^{3}\over 27}}},B=\sqrt[3]{-\frac{q}{2}-\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}}</math>
 +
:<math>A^3=-\frac{q}{2}+\sqrt{\frac{q^2}{4}+\frac{p^3}{27}}</math>
 +
:<math>1/A^3=\frac{27}{p^3}\cdot (\frac{q}{2}+\sqrt{\frac{q^2}{4}+\frac{p^3}{27}})</math>
 +
:<math>AB=\sqrt[3]{-\frac{p^3}{27}}=-\frac{p}{3}</math>
 +
:<math>B=-\frac{p}{3A}=-\frac{pA^2}{3A^3}=-\frac{9(\frac{q}{2}+\sqrt{\frac{q^2}{4}+\frac{p^3}{27}})}{p^2}A^2</math>
 +
따라서
 +
:<math>x_1=A+B=A-\frac{9(\frac{q}{2}+\sqrt{\frac{q^2}{4}+\frac{p^3}{27}})}{p^2}A^2</math>
 +
*  거듭제곱근 체확장의 개념을 도입하는 것이 유용하다
  
 
   
 
   
42번째 줄: 43번째 줄:
 
==5차방정식 근의 공식의 불가능성 증명==
 
==5차방정식 근의 공식의 불가능성 증명==
  
'''정리 0.'''
+
;정리 0
  
 
소수 p 에 대하여 <math>F</math>의 거듭제곱근 체확장 <math>R=F(\sqrt[p]a)</math> 이 있다고 하자.  
 
소수 p 에 대하여 <math>F</math>의 거듭제곱근 체확장 <math>R=F(\sqrt[p]a)</math> 이 있다고 하자.  
52번째 줄: 53번째 줄:
 
(2) <math>v=v_0+{\sqrt[p]\rho}+v_2{\sqrt[p]\rho^2}+v_3{\sqrt[p]\rho^3}++\cdots+v_{p-1}{\sqrt[p]\rho^{p-1}}</math> 형태로 표현가능하다.
 
(2) <math>v=v_0+{\sqrt[p]\rho}+v_2{\sqrt[p]\rho^2}+v_3{\sqrt[p]\rho^3}++\cdots+v_{p-1}{\sqrt[p]\rho^{p-1}}</math> 형태로 표현가능하다.
  
 
  
(증명)
+
 
 +
;증명
  
 
<math>u_0,u_1, u_2,u_3, \cdots, u_{p-1} \in F</math>가 존재하여 <math>v=u_0+u_1{\sqrt[p]a}+u_2{\sqrt[p]a^2}+u_3{\sqrt[p]a^3}++\cdots+u_{p-1}{\sqrt[p]a^{p-1}}</math>로 쓸 수 있다.  
 
<math>u_0,u_1, u_2,u_3, \cdots, u_{p-1} \in F</math>가 존재하여 <math>v=u_0+u_1{\sqrt[p]a}+u_2{\sqrt[p]a^2}+u_3{\sqrt[p]a^3}++\cdots+u_{p-1}{\sqrt[p]a^{p-1}}</math>로 쓸 수 있다.  
66번째 줄: 67번째 줄:
 
   
 
   
  
'''정리 1.'''
+
;정리 1
  
 
소수 p 에 대하여 <math>F</math>의 거듭제곱근 체확장 <math>R=F(\sqrt[p]a)</math> 이 있다고 하자.  
 
소수 p 에 대하여 <math>F</math>의 거듭제곱근 체확장 <math>R=F(\sqrt[p]a)</math> 이 있다고 하자.  
78번째 줄: 79번째 줄:
 
   
 
   
  
(증명)
+
;증명
  
 
생략. ■
 
생략. ■
84번째 줄: 85번째 줄:
 
   
 
   
  
)
+
;
  
<math>\alpha_1=v_0+u+v_2u^2</math>
+
<math>\alpha_1=v_0+u+v_2u^2</math>
  
<math>\alpha_2=v_0+\zeta u+v_2\zeta^2u^2</math>
+
<math>\alpha_2=v_0+\zeta u+v_2\zeta^2u^2</math>
  
<math>\alpha_3=v_0+\zeta^2 u+v_2\zeta u^2</math>
+
<math>\alpha_3=v_0+\zeta^2 u+v_2\zeta u^2</math>
  
 
   
 
   
104번째 줄: 105번째 줄:
 
   
 
   
  
'''정리 2. '''
+
;정리 2
  
 
이 5차방정식의 한 해 v를 계수로부터 시작하여 근호와 사칙연산을 통해 표현할 수 있다고 가정하자. 그러면 다음이 성립한다.  
 
이 5차방정식의 한 해 v를 계수로부터 시작하여 근호와 사칙연산을 통해 표현할 수 있다고 가정하자. 그러면 다음이 성립한다.  
112번째 줄: 113번째 줄:
 
(2)  <math>v=v_0+{\sqrt[p]\rho}+v_2{\sqrt[p]\rho^2}+v_3{\sqrt[p]\rho^3}++\cdots+v_{p-1}{\sqrt[p]\rho^{p-1}}</math> 형태로 표현가능하다.
 
(2)  <math>v=v_0+{\sqrt[p]\rho}+v_2{\sqrt[p]\rho^2}+v_3{\sqrt[p]\rho^3}++\cdots+v_{p-1}{\sqrt[p]\rho^{p-1}}</math> 형태로 표현가능하다.
  
 
  
 
  
(증명)
+
;증명
  
 
'''정리 0'''을 반복해서 사용. ■
 
'''정리 0'''을 반복해서 사용. ■
122번째 줄: 121번째 줄:
 
   
 
   
  
<br> )
+
;
  
* [[2차 방정식의 근의 공식]]:<math>ax^2+bx+c=0</math>:<math>x_1=\frac{-b+ \sqrt{b^2-4ac}}{2a}</math>, <math>x_2=\frac{-b+ \sqrt{b^2-4ac}}{2a}</math><br<br>
+
* [[2차 방정식의 근의 공식]]
* [[3차 방정식의 근의 공식|3차, 4차 방정식의 근의 공식]]:<math>x^3 + px + q = 0</math>:<math>x_1=\sqrt[3]{-\frac{q}{2}+\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}}+\sqrt[3]{-\frac{q}{2}-\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}}</math>:<math>x_2=\left( -\tfrac{1}{2}+\tfrac{\sqrt{3}}{2}i \right)\sqrt[3]{-\frac{q}{2}+\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}}+\left( -\tfrac{1}{2}-\tfrac{\sqrt{3}}{2}i \right)\sqrt[3]{-\frac{q}{2}-\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}}</math>:<math>x_3=\left( -\tfrac{1}{2}-\tfrac{\sqrt{3}}{2}i \right)\sqrt[3]{-\frac{q}{2}+\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}}+\left( -\tfrac{1}{2}+\tfrac{\sqrt{3}}{2}i \right)\sqrt[3]{-\frac{q}{2}-\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}} </math><br>
+
:<math>ax^2+bx+c=0</math>:<math>x_1=\frac{-b+ \sqrt{b^2-4ac}}{2a}, x_2=\frac{-b+ \sqrt{b^2-4ac}}{2a}</math>   
 +
* [[3차 방정식의 근의 공식|3차, 4차 방정식의 근의 공식]]:<math>x^3 + px + q = 0</math>:<math>x_1=\sqrt[3]{-\frac{q}{2}+\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}}+\sqrt[3]{-\frac{q}{2}-\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}}</math>:<math>x_2=\left( -\tfrac{1}{2}+\tfrac{\sqrt{3}}{2}i \right)\sqrt[3]{-\frac{q}{2}+\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}}+\left( -\tfrac{1}{2}-\tfrac{\sqrt{3}}{2}i \right)\sqrt[3]{-\frac{q}{2}-\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}}</math>:<math>x_3=\left( -\tfrac{1}{2}-\tfrac{\sqrt{3}}{2}i \right)\sqrt[3]{-\frac{q}{2}+\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}}+\left( -\tfrac{1}{2}+\tfrac{\sqrt{3}}{2}i \right)\sqrt[3]{-\frac{q}{2}-\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}} </math>
  
 
   
 
   
131번째 줄: 131번째 줄:
 
   
 
   
  
'''정리 3.''' (theorem of natural irrationalities)
+
;정리 3 (theorem of natural irrationalities)
  
 
<math>v_0,v_2,v_3,\cdots, v_{p-1},\rho</math> 는 방정식의 해 <math>x_1,x_2,\cdots,x_5</math> 의 유리함수로 표현할 수 있다.
 
<math>v_0,v_2,v_3,\cdots, v_{p-1},\rho</math> 는 방정식의 해 <math>x_1,x_2,\cdots,x_5</math> 의 유리함수로 표현할 수 있다.
139번째 줄: 139번째 줄:
 
   
 
   
  
)
+
;
 
 
* [[2차 방정식의 근의 공식]]:<math>ax^2+bx+c=0</math> 의 해를 <math>x_1,x_2</math>라 하면, <math>\sqrt{b^2-4ac}=x_1-x_2</math> 이다. <br>
 
* [[3차 방정식의 근의 공식|3차, 4차 방정식의 근의 공식]]<br>
 
  
+
* [[2차 방정식의 근의 공식]]
 +
* 방정식 <math>ax^2+bx+c=0</math> 의 해를 <math>x_1,x_2</math>라 하면, <math>\sqrt{b^2-4ac}=x_1-x_2</math> 이다.
 +
* [[3차 방정식의 근의 공식|3차, 4차 방정식의 근의 공식]]
  
 
   
 
   
  
(증명)
+
;증명
  
 
체확장의 높이에 따른 귀납법을 사용하자.  
 
체확장의 높이에 따른 귀납법을 사용하자.  
164번째 줄: 163번째 줄:
 
   
 
   
  
'''정리 4.'''
+
;정리 4
  
 
<math>n\geq 5</math> 라 하자. 체 <math>\mathbb{C}(x_1,x_2\cdots,x_n)</math>의 원소 <math>u,a</math>가 <math>u^p= a</math> 를 만족시킨다고 하자. a가 <math>\sigma=(123)</math>, <math>\tau=(345)</math>에 의해 불변이면. u도 역시  <math>\sigma=(123)</math>, <math>\tau=(345)</math>에 의해 불변이다.
 
<math>n\geq 5</math> 라 하자. 체 <math>\mathbb{C}(x_1,x_2\cdots,x_n)</math>의 원소 <math>u,a</math>가 <math>u^p= a</math> 를 만족시킨다고 하자. a가 <math>\sigma=(123)</math>, <math>\tau=(345)</math>에 의해 불변이면. u도 역시  <math>\sigma=(123)</math>, <math>\tau=(345)</math>에 의해 불변이다.
170번째 줄: 169번째 줄:
 
   
 
   
  
(증명)
+
;증명
  
 
<math>\chi</math> 를 u에 의해 정의되는 character 라 하자.
 
<math>\chi</math> 를 u에 의해 정의되는 character 라 하자.
194번째 줄: 193번째 줄:
 
   
 
   
  
'''정리 5.'''
+
;정리 5
  
 
<math>F=\mathbb{C}(s_1,s_2,\cdots,s_5) \subset R \subset K=\mathbb{C}(x_1,x_2\cdots,x_5)</math> 인  F의 거듭제곱근 체확장 <math>R</math>은 <math>\sigma=(123)</math>, <math>\tau=(345)</math>에 의해 불변이다.  
 
<math>F=\mathbb{C}(s_1,s_2,\cdots,s_5) \subset R \subset K=\mathbb{C}(x_1,x_2\cdots,x_5)</math> 인  F의 거듭제곱근 체확장 <math>R</math>은 <math>\sigma=(123)</math>, <math>\tau=(345)</math>에 의해 불변이다.  
  
 
  
(증명)
+
증명
  
 
체확장의 높이에 따른 귀납법을 사용하자.  
 
체확장의 높이에 따른 귀납법을 사용하자.  
210번째 줄: 208번째 줄:
 
   
 
   
  
'''정리 6.''' (5차방정식의 근의 공식의 불가능성)
+
===5차방정식의 근의 공식의 불가능성===
 
 
 
 
 
(증명)
 
 
 
 
일반적인 5차방정식 <math>x^5 - s_{1} x^{4} + s_{2} x^{3} -s_{3}x^{2}+s_{4} x - s_5= 0</math>의 근의 공식이 존재한다고 하고, 다섯 해를 <math>x_1,x_2,\cdots,x_5</math> 라 하자.
 
일반적인 5차방정식 <math>x^5 - s_{1} x^{4} + s_{2} x^{3} -s_{3}x^{2}+s_{4} x - s_5= 0</math>의 근의 공식이 존재한다고 하고, 다섯 해를 <math>x_1,x_2,\cdots,x_5</math> 라 하자.
  
228번째 줄: 221번째 줄:
 
   
 
   
  
 
  
 
==맴돌이(monodromy)==
 
==맴돌이(monodromy)==
  
*  <math>3w^5-25w^3+60w-z=0</math>.<br>
+
*  <math>3w^5-25w^3+60w-z=0</math>.
* <math>z=\pm 38</math> and <math>z=\pm 16</math> 에서 w는 중근을 가진다<br>
+
* <math>z=\pm 38</math> and <math>z=\pm 16</math> 에서 w는 중근을 가진다
*  리만곡면의 branch point<br>
+
*  리만곡면의 branch point
  
 
   
 
   
269번째 줄: 261번째 줄:
 
==관련도서==
 
==관련도서==
  
*  Abel's Proof<br>
+
*  Abel's Proof
 
** Peter Pesic, Chapter 6. 'Abel's proof' 85-94p ([[2284146/attachments/1125756|pdf]])
 
** Peter Pesic, Chapter 6. 'Abel's proof' 85-94p ([[2284146/attachments/1125756|pdf]])
* [http://www.amazon.com/Galois-Theory-Algebraic-Equations-Jean-Pierre/dp/9810245416/ref=sr_1_1/192-3053250-5244809?ie=UTF8&s=books&qid=1228931227&sr=1-1 Galois' Theory of Algebraic Equations]<br>
+
* [http://www.amazon.com/Galois-Theory-Algebraic-Equations-Jean-Pierre/dp/9810245416/ref=sr_1_1/192-3053250-5244809?ie=UTF8&s=books&qid=1228931227&sr=1-1 Galois' Theory of Algebraic Equations]
 
** Jean-Pierre Tignol, Chapter 13.  Ruffini and Abel on general equations ([[2284146/attachments/1015504|pdf]])
 
** Jean-Pierre Tignol, Chapter 13.  Ruffini and Abel on general equations ([[2284146/attachments/1015504|pdf]])
 +
 +
 +
==리뷰, 에세이, 강의노트==
 +
* Skopenkov, A. “A Short Elementary Proof of the Ruffini-Abel Theorem.” arXiv:1508.03317 [math], August 13, 2015. http://arxiv.org/abs/1508.03317.
 +
 +
 
[[분류:방정식과 근의 공식]]
 
[[분류:방정식과 근의 공식]]
 
[[분류:추상대수학]]
 
[[분류:추상대수학]]

2020년 11월 16일 (월) 03:54 기준 최신판

개요

  • 5차방정식의 근의 방정식이 존재하지 않음에 대한 아벨(1802 – 1829)의 증명(에 가까운 증명)
  • 이 증명은 학부에서 배우는 표준적인 증명과는 성격이 약간 다르다



증명의 개요

  • 증명은 크게 세 부분으로 구성
    • 5차 방정식의 해를 거듭제곱근기호를 써서 표현하는 경우, 근의 공식이 갖는 일반적인 형태
    • 거듭제곱근의 기호를 써서 표현할 때 등장하는 수를 방정식의 해의 유리함수로 표현할 수 있다는 사실의 증명
    • 위의 두 사실 사이의 긴장을 이용하여 모순을 이끌어내는 부분




  • 3차, 4차 방정식의 근의 공식\[x^3 + px + q = 0\]\[x_1=\sqrt[3]{-\frac{q}{2}+\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}}+\sqrt[3]{-\frac{q}{2}-\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}}\]\[x_2=\left( -\tfrac{1}{2}+\tfrac{\sqrt{3}}{2}i \right)\sqrt[3]{-\frac{q}{2}+\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}}+\left( -\tfrac{1}{2}-\tfrac{\sqrt{3}}{2}i \right)\sqrt[3]{-\frac{q}{2}-\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}}\]\[x_3=\left( -\tfrac{1}{2}-\tfrac{\sqrt{3}}{2}i \right)\sqrt[3]{-\frac{q}{2}+\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}}+\left( -\tfrac{1}{2}+\tfrac{\sqrt{3}}{2}i \right)\sqrt[3]{-\frac{q}{2}-\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}} \]

근의 공식이 갖는 일반적인 형태의 이해

\[A=\sqrt[3]{-{q\over 2}+ \sqrt{{q^{2}\over 4}+{p^{3}\over 27}}},B=\sqrt[3]{-\frac{q}{2}-\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}}\] \[A^3=-\frac{q}{2}+\sqrt{\frac{q^2}{4}+\frac{p^3}{27}}\] \[1/A^3=\frac{27}{p^3}\cdot (\frac{q}{2}+\sqrt{\frac{q^2}{4}+\frac{p^3}{27}})\] \[AB=\sqrt[3]{-\frac{p^3}{27}}=-\frac{p}{3}\] \[B=-\frac{p}{3A}=-\frac{pA^2}{3A^3}=-\frac{9(\frac{q}{2}+\sqrt{\frac{q^2}{4}+\frac{p^3}{27}})}{p^2}A^2\] 따라서 \[x_1=A+B=A-\frac{9(\frac{q}{2}+\sqrt{\frac{q^2}{4}+\frac{p^3}{27}})}{p^2}A^2\]

  • 거듭제곱근 체확장의 개념을 도입하는 것이 유용하다




5차방정식 근의 공식의 불가능성 증명

정리 0

소수 p 에 대하여 \(F\)의 거듭제곱근 체확장 \(R=F(\sqrt[p]a)\) 이 있다고 하자.

원소 \(v\in R-F\) 에 대하여, 다음이 성립한다.

(1) \(\rho, v_0,v_1=1, v_2,v_3, \cdots, v_{p-1} \in F\)이 존재하여,

(2) \(v=v_0+{\sqrt[p]\rho}+v_2{\sqrt[p]\rho^2}+v_3{\sqrt[p]\rho^3}++\cdots+v_{p-1}{\sqrt[p]\rho^{p-1}}\) 형태로 표현가능하다.


증명

\(u_0,u_1, u_2,u_3, \cdots, u_{p-1} \in F\)가 존재하여 \(v=u_0+u_1{\sqrt[p]a}+u_2{\sqrt[p]a^2}+u_3{\sqrt[p]a^3}++\cdots+u_{p-1}{\sqrt[p]a^{p-1}}\)로 쓸 수 있다.

\(u_i\sqrt[p]a^i\neq 0 \) 인 i가 적어도 하나 존재한다. \(\sqrt[p]\rho=u_i\sqrt[p]a^i\), 즉 \(\rho=u_i^p a^i\) 로 두면 된다. ■




정리 1

소수 p 에 대하여 \(F\)의 거듭제곱근 체확장 \(R=F(\sqrt[p]a)\) 이 있다고 하자.

원소 \(v\in R-F\) 가 F의 계수를 가지는 방정식의 해라고 하고, 정리 0에 따라 \(v=v_0+{\sqrt[p]\rho}+v_2{\sqrt[p]\rho^2}+v_3{\sqrt[p]\rho^3}++\cdots+v_{p-1}{\sqrt[p]\rho^{p-1}}\)로 꼴로 쓸 수 있다.

그러면, 이 방정식의 p개의 해 \(v=\alpha_1, \alpha_2,\alpha_3, \cdots, \alpha_{p} \)는 모두 R의 원소이며, \(\rho, v_0,v_1=1, v_2,v_3, \cdots, v_{p-1} \in F\) 는 모두 \(\alpha_1, \alpha_2,\alpha_3, \cdots, \alpha_{p} \)의 유리함수 표현으로 쓸 수 있다.



증명

생략. ■


\(\alpha_1=v_0+u+v_2u^2\)

\(\alpha_2=v_0+\zeta u+v_2\zeta^2u^2\)

\(\alpha_3=v_0+\zeta^2 u+v_2\zeta u^2\)


\(v_0=\frac{1}{3}(\alpha_1+\zeta^2\alpha_2+\zeta \alpha_3)\)

\(u=\frac{1}{3}(\alpha_1+\zeta^2\alpha_2+\zeta \alpha_3)\)


이제 5차방정식 \(x^5 - s_{1} x^{4} + s_{2} x^{3} -s_{3}x^{2}+s_{4} x - s_5= 0\)의 해를 \(x_1,x_2,\cdots,x_5\) 라 하자. 복소수체에 방정식의 계수들을 넣어 만들어진 체 \(F=\mathbb{C}(s_1,s_2,\cdots,s_5)\)를 정의하자.


정리 2

이 5차방정식의 한 해 v를 계수로부터 시작하여 근호와 사칙연산을 통해 표현할 수 있다고 가정하자. 그러면 다음이 성립한다.

(1) \(F=\mathbb{C}(s_1,s_2,\cdots,s_5)\)의 적당한 거듭제곱근 체확장 \(R\)과 적당한 소수 p, 원소 \(\rho, v_0,v_1=1, v_2,v_3, \cdots, v_{p-1} \in F\)이 존재하여,

(2) \(v=v_0+{\sqrt[p]\rho}+v_2{\sqrt[p]\rho^2}+v_3{\sqrt[p]\rho^3}++\cdots+v_{p-1}{\sqrt[p]\rho^{p-1}}\) 형태로 표현가능하다.


증명

정리 0을 반복해서 사용. ■


\[ax^2+bx+c=0\]\[x_1=\frac{-b+ \sqrt{b^2-4ac}}{2a}, x_2=\frac{-b+ \sqrt{b^2-4ac}}{2a}\]

  • 3차, 4차 방정식의 근의 공식\[x^3 + px + q = 0\]\[x_1=\sqrt[3]{-\frac{q}{2}+\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}}+\sqrt[3]{-\frac{q}{2}-\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}}\]\[x_2=\left( -\tfrac{1}{2}+\tfrac{\sqrt{3}}{2}i \right)\sqrt[3]{-\frac{q}{2}+\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}}+\left( -\tfrac{1}{2}-\tfrac{\sqrt{3}}{2}i \right)\sqrt[3]{-\frac{q}{2}-\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}}\]\[x_3=\left( -\tfrac{1}{2}-\tfrac{\sqrt{3}}{2}i \right)\sqrt[3]{-\frac{q}{2}+\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}}+\left( -\tfrac{1}{2}+\tfrac{\sqrt{3}}{2}i \right)\sqrt[3]{-\frac{q}{2}-\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}} \]



정리 3 (theorem of natural irrationalities)

\(v_0,v_2,v_3,\cdots, v_{p-1},\rho\) 는 방정식의 해 \(x_1,x_2,\cdots,x_5\) 의 유리함수로 표현할 수 있다.




증명

체확장의 높이에 따른 귀납법을 사용하자.

높이가 1이면, 정리0에 의하여, 적당한 소수 l에 대하여 \(R=F(\sqrt[l]a)\)의 형태로 쓸 수 있다. 정리 1을 적용하면, a는 \(x_1,x_2,\cdots,x_5\)의 유리함수로 표현가능하며, 따라서 모든 \(R=F(\sqrt[l]a)\)의 원소를 \(x_1,x_2,\cdots,x_5\)의 유리함수로 표현할 수 있다. \(v_0,v_2,v_3,\cdots, v_{p-1},\rho\)는 모두 R의 원소이므로, 마찬가지로 \(x_1,x_2,\cdots,x_5\)의 유리함수로 쓸 수 있다.

이제 체확장의 높이가 2이상이면 , \(F\)의 거듭제곱근 체확장 \(R_1\) 이 존재하여, 적당한 소수 l에 대하여 \(R=R_1(\sqrt[l]u)\) 의 형태로 쓸 수 있다.

귀납법의 가정에 의하여, 체확장 \(R_1\)의 모든 원소들은 방정식의 해 \(x_1,x_2,\cdots,x_5\) 의 유리함수로 표현가능하다.

이제 \(R=R_1(\sqrt[l]u)\)에 정리 1을 적용하면, u는 \(x_1,x_2,\cdots,x_5\)의 유리함수로 표현가능하며 따라서 R의 모든 원소는 \(x_1,x_2,\cdots,x_5\) 의 유리함수로 쓸 수 있다. ■



정리 4

\(n\geq 5\) 라 하자. 체 \(\mathbb{C}(x_1,x_2\cdots,x_n)\)의 원소 \(u,a\)가 \(u^p= a\) 를 만족시킨다고 하자. a가 \(\sigma=(123)\), \(\tau=(345)\)에 의해 불변이면. u도 역시 \(\sigma=(123)\), \(\tau=(345)\)에 의해 불변이다.


증명

\(\chi\) 를 u에 의해 정의되는 character 라 하자.

\(\sigma(u)=\chi(\sigma)u\)

\(\tau(u)=\chi(\tau)u\)


\(\tau\sigma=(12453)\)

\(\tau\sigma^2=(14532)\)

이므로 \(\chi(\sigma)=1\), \(\chi(\tau)=1\)이다. ■


노트. 여기가 \(n\geq 5\) 조건이 필요한 부분이다.



정리 5

\(F=\mathbb{C}(s_1,s_2,\cdots,s_5) \subset R \subset K=\mathbb{C}(x_1,x_2\cdots,x_5)\) 인 F의 거듭제곱근 체확장 \(R\)은 \(\sigma=(123)\), \(\tau=(345)\)에 의해 불변이다.


증명

체확장의 높이에 따른 귀납법을 사용하자.

높이가 1이면, 정리0에 의하여, \(R=F(\sqrt[p]a)\)의 형태로 쓸 수 있다. 여기에 정리 3을 적용하면, 체확장 \(R\)은 \(\sigma=(123)\), \(\tau=(345)\)에 의해 불변임을 알 수 있다.

이제 체확장의 높이가 2이상이면 , \(F\)의 거듭제곱근 체확장 \(R_1\) 이 존재하여, 적당한 소수 p 에 대하여 \(R=R_1(\sqrt[p]u)\) 의 형태로 쓸 수 있다. 귀납법의 가정에 의하여, 체확장 \(R_1\)은 \(\sigma=(123)\), \(\tau=(345)\)에 의해 불변이다. \(R=R_1(\sqrt[p]u)\)에 정리 4을 적용하면, 체확장 \(R\)은 \(\sigma=(123)\), \(\tau=(345)\)에 의해 불변이다. ■


5차방정식의 근의 공식의 불가능성

일반적인 5차방정식 \(x^5 - s_{1} x^{4} + s_{2} x^{3} -s_{3}x^{2}+s_{4} x - s_5= 0\)의 근의 공식이 존재한다고 하고, 다섯 해를 \(x_1,x_2,\cdots,x_5\) 라 하자.

정리 2에 의하여, \(F=\mathbb{C}(s_1,s_2,\cdots,s_5)\)의 적당한 거듭제곱근 체확장 \(R\)과 원소 \(v_0,v_2,v_3,\cdots, v_{p-1},\rho\)이 존재하여, \(x_1=v_0+{\sqrt[p]\rho}+v_2{\sqrt[p]\rho^2}+v_3{\sqrt[p]\rho^3}++\cdots+v_{p-1}{\sqrt[p]\rho^{p-1}}\) 의 꼴로 쓸 수 있다.

정리 3에 의하여, \(F=\mathbb{C}(s_1,s_2,\cdots,s_5) \subset R \subset K=\mathbb{C}(x_1,x_2\cdots,x_5)\) 를 가정할 수 있다.

정리 5에 의하여, 거듭제곱근 체확장 \(R\)과 원소 \(v_0,v_2,v_3,v_4,\rho \in R\) 는 모두 \(\sigma,\tau\)에 의해 불변이다. 정리 5를 한번 더 적용하면, \(\sqrt[p]\rho\) 도 역시 \(\sigma,\tau\)에 의하여 불변이다.

따라서 \(x_1=v_0+{\sqrt[p]\rho}+v_2{\sqrt[p]\rho^2}+v_3{\sqrt[p]\rho^3}++\cdots+v_{p-1}{\sqrt[p]\rho^{p-1}}\) 의 우변은 \(\sigma\)에 의하여 불변이다. 그러나 \(x_1\)은 \(\sigma\)에 의하여 불변일 수 없으므로 모순이다. ■



맴돌이(monodromy)

  • \(3w^5-25w^3+60w-z=0\).
  • \(z=\pm 38\) and \(z=\pm 16\) 에서 w는 중근을 가진다
  • 리만곡면의 branch point






역사



메모

관련된 항목들

관련도서


리뷰, 에세이, 강의노트