"홀로노믹 수열"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) |
Pythagoras0 (토론 | 기여) |
||
(같은 사용자의 중간 판 2개는 보이지 않습니다) | |||
2번째 줄: | 2번째 줄: | ||
* 홀로노믹 수열 (P-recursive,P-finite 또는 D-finite이라고도 불림) | * 홀로노믹 수열 (P-recursive,P-finite 또는 D-finite이라고도 불림) | ||
* 다음의 형태의 점화식 | * 다음의 형태의 점화식 | ||
− | + | :<math> | |
c_k(n)a_{n+k}+c_{k-1}(n)a_{n+k-1}+\cdots+c_{0}(n)a_{n}=0 \label{lin} | c_k(n)a_{n+k}+c_{k-1}(n)a_{n+k-1}+\cdots+c_{0}(n)a_{n}=0 \label{lin} | ||
− | + | </math> | |
− | 여기서 | + | 여기서 <math>c_0,\cdots, c_k\neq 0</math>는 <math>n</math>의 다항식 |
==예== | ==예== | ||
− | * [[팩토리얼(factorial)]], | + | * [[팩토리얼(factorial)]], <math>a_n=n!</math> |
− | + | :<math> | |
a_{n+1}-(n+1)a_n=0 | a_{n+1}-(n+1)a_n=0 | ||
− | + | </math> | |
* [[카탈란 수열(Catalan numbers)]] | * [[카탈란 수열(Catalan numbers)]] | ||
− | + | :<math> | |
(n+2)a_{n+1}+(-4 n-2)a_{n}=0 | (n+2)a_{n+1}+(-4 n-2)a_{n}=0 | ||
− | + | </math> | |
* [[아페리(Apéry) 점화식]] | * [[아페리(Apéry) 점화식]] | ||
− | + | :<math> | |
n^2 u_{n}-(11n^2-11n+3)u_{n-1}-(n-1)^2u_{n-2}=0 \label{z2} | n^2 u_{n}-(11n^2-11n+3)u_{n-1}-(n-1)^2u_{n-2}=0 \label{z2} | ||
− | + | </math> | |
35번째 줄: | 35번째 줄: | ||
==관련논문== | ==관련논문== | ||
+ | * Jakob Ablinger, Inverse Mellin Transform of Holonomic Sequences, arXiv:1606.02845 [cs.SC], June 09 2016, http://arxiv.org/abs/1606.02845 | ||
+ | * Ekhad, Shalosh B., and Doron Zeilberger. “The C-Finite Ansatz Meets the Holonomic Ansatz.” arXiv:1512.06902 [math], December 21, 2015. http://arxiv.org/abs/1512.06902. | ||
* Wimp, Jet, and Doron Zeilberger. 1985. “Resurrecting the Asymptotics of Linear Recurrences.” Journal of Mathematical Analysis and Applications 111 (1) (October): 162–176. doi:10.1016/0022-247X(85)90209-4. | * Wimp, Jet, and Doron Zeilberger. 1985. “Resurrecting the Asymptotics of Linear Recurrences.” Journal of Mathematical Analysis and Applications 111 (1) (October): 162–176. doi:10.1016/0022-247X(85)90209-4. | ||
[[분류:수열]] | [[분류:수열]] |
2020년 11월 16일 (월) 04:18 기준 최신판
개요
- 홀로노믹 수열 (P-recursive,P-finite 또는 D-finite이라고도 불림)
- 다음의 형태의 점화식
\[ c_k(n)a_{n+k}+c_{k-1}(n)a_{n+k-1}+\cdots+c_{0}(n)a_{n}=0 \label{lin} \] 여기서 \(c_0,\cdots, c_k\neq 0\)는 \(n\)의 다항식
예
- 팩토리얼(factorial), \(a_n=n!\)
\[ a_{n+1}-(n+1)a_n=0 \]
\[ (n+2)a_{n+1}+(-4 n-2)a_{n}=0 \]
\[ n^2 u_{n}-(11n^2-11n+3)u_{n-1}-(n-1)^2u_{n-2}=0 \label{z2} \]
매스매티카 파일 및 계산 리소스
- https://docs.google.com/file/d/0B8XXo8Tve1cxRjVVZU9kYTRMeFE/edit
- http://www.wolfram.com/products/mathematica/newin7/content/NewNumberTheoryCapabilities/WorkWithHolonomicSequences.html
리뷰, 에세이, 강의노트
- Koepf, Wolfram. 1997. “The Algebra of Holonomic Equations.” Mathematische Semesterberichte 44 (2): 173–194. doi:10.1007/s005910050032. http://www.mathematik.uni-kassel.de/~koepf/Publikationen/Algebra.pdf
- Some properties of holonomic sequences
관련논문
- Jakob Ablinger, Inverse Mellin Transform of Holonomic Sequences, arXiv:1606.02845 [cs.SC], June 09 2016, http://arxiv.org/abs/1606.02845
- Ekhad, Shalosh B., and Doron Zeilberger. “The C-Finite Ansatz Meets the Holonomic Ansatz.” arXiv:1512.06902 [math], December 21, 2015. http://arxiv.org/abs/1512.06902.
- Wimp, Jet, and Doron Zeilberger. 1985. “Resurrecting the Asymptotics of Linear Recurrences.” Journal of Mathematical Analysis and Applications 111 (1) (October): 162–176. doi:10.1016/0022-247X(85)90209-4.