"Lieb-Liniger delta Bose gas"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
1번째 줄: 1번째 줄:
 
==introduction==
 
==introduction==
  
* N bosons interacting on the line $[0,L]$ of length L via the delta function potential
+
* N bosons interacting on the line <math>[0,L]</math> of length L via the delta function potential
 
* one-dimensional Bose gas
 
* one-dimensional Bose gas
 
* 1963 Lieb and Liniger solved by [[Bethe ansatz]]
 
* 1963 Lieb and Liniger solved by [[Bethe ansatz]]
15번째 줄: 15번째 줄:
  
 
==wave function==
 
==wave function==
* $\psi(x_1, x_2, \dots, x_j, \dots,x_N)$
+
* <math>\psi(x_1, x_2, \dots, x_j, \dots,x_N)</math>
* $\psi(x_1, \dots, x_N) =  \sum_P a(P)\exp \left( i \sum_{j=1}^N k_{Pj} x_j\right)$
+
* <math>\psi(x_1, \dots, x_N) =  \sum_P a(P)\exp \left( i \sum_{j=1}^N k_{Pj} x_j\right)</math>
$$
+
:<math>
 
a(P) = \prod\nolimits_{1\leq i<j \leq N}\left(1+\frac{ic}{k_{Pi}  -k_{Pj}}\right) \ .  
 
a(P) = \prod\nolimits_{1\leq i<j \leq N}\left(1+\frac{ic}{k_{Pi}  -k_{Pj}}\right) \ .  
$$
+
</math>
  
  

2020년 11월 16일 (월) 05:25 판

introduction

  • N bosons interacting on the line \([0,L]\) of length L via the delta function potential
  • one-dimensional Bose gas
  • 1963 Lieb and Liniger solved by Bethe ansatz
  • In 1963, Lieb and Liniger solved exactly a one dimensional model of bosons interacting by a repulsive \delta-potential and calculated the ground state in the thermodynamic limit

 

Hamiltonian

  • quantum mechanical Hamiltonian

\[H=-\sum_{j=1}^{N}\frac{\partial^2}{\partial x_j^2}+2c\sum_{1\leq i<j\leq N}^{N}\delta(x_i-x_j)\]  


wave function

  • \(\psi(x_1, x_2, \dots, x_j, \dots,x_N)\)
  • \(\psi(x_1, \dots, x_N) = \sum_P a(P)\exp \left( i \sum_{j=1}^N k_{Pj} x_j\right)\)

\[ a(P) = \prod\nolimits_{1\leq i<j \leq N}\left(1+\frac{ic}{k_{Pi} -k_{Pj}}\right) \ . \]


two-body scattering term

  • \(s_{ab}=k_a-k_b+ic\)


Bethe-ansatz equation

\[\exp(ik_jL)=\prod_{l=1}^{N}\frac{k_j-k_l+ic}{k_j-k_l-ic}\]

 

energy spectrum

  • energy of a Bethe state

\[E=\sum_{j=1}^{N}k_j^2\]

 

related items

 

computational resource

encyclopedia


articles