"감마함수의 비와 라마누잔의 연분수"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
 
(사용자 2명의 중간 판 17개는 보이지 않습니다)
1번째 줄: 1번째 줄:
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 수학노트 원문주소</h5>
+
==개요==
  
 
+
*  감마함수의 비를 다음과 같이 연분수로 표현가능
 +
:<math>\frac{\Gamma \left(\frac{1}{4} (-n+x+1)\right) \Gamma \left(\frac{1}{4} (n+x+1)\right)}{\Gamma \left(\frac{1}{4} (-n+x+3)\right) \Gamma \left(\frac{1}{4} (n+x+3)\right)}=\cfrac{4}{x-\cfrac{n^2-1}{2 x-\cfrac{n^2-9}{2 x-\cfrac{n^2-25}{2 x-\cfrac{n^2-49}{2 x-\cfrac{n^2-81}{2 x-\cfrac{n^2-121}{2 x-\cfrac{n^2-169}{2 x-\cfrac{n^2-225}{2 x-\cfrac{n^2-289}{2 x-\cdots}}}}}}}}}}</math>
 +
* <math>n=0, x=1</math> 인 경우, [[원주율과 연분수 Brouncker 의 공식]] 을 얻는다:<math>\frac \pi 4 = \cfrac{1}{1+\cfrac{1^2}{2+\cfrac{3^2}{2+\cfrac{5^2}{2+\cfrac{7^2}{2+\cfrac{9^2}{2+\ddots}}}}}}</math>
  
 
 
  
<h5>개요</h5>
+
==감마함수와 무한곱==
 +
; 정리
 +
: <math>\frac{\Gamma(\frac{1}{4})\Gamma(\frac{3}{4})}{\Gamma(\frac{2}{4})\Gamma(\frac{2}{4})}=\sqrt{2}</math>  
  
*  감마함수의 비를 다음과 같이 연분수로 표현가능<br><math>\frac{\Gamma \left(\frac{1}{4} (-n+x+1)\right) \Gamma \left(\frac{1}{4} (n+x+1)\right)}{\Gamma \left(\frac{1}{4} (-n+x+3)\right) \Gamma \left(\frac{1}{4} (n+x+3)\right)}=\cfrac{4}{x-\cfrac{n^2-1}{2 x-\cfrac{n^2-9}{2 x-\cfrac{n^2-25}{2 x-\cfrac{n^2-49}{2 x-\cfrac{n^2-81}{2 x-\cfrac{n^2-121}{2 x-\cfrac{n^2-169}{2 x-\cfrac{n^2-225}{2 x-\cfrac{n^2-289}{2 x-\cdots}}}}}}}}}}</math><br>
+
;증명
* <math>n=0, x=1</math> 인 경우, [[원주율과 연분수 Brouncker 의 공식]] 을 얻는다<br><math>\frac \pi 4 = \cfrac{1}{1+\cfrac{1^2}{2+\cfrac{3^2}{2+\cfrac{5^2}{2+\cfrac{7^2}{2+\cfrac{9^2}{2+\ddots}}}}}}</math><br>
+
[[감마함수]]의 다음 표현 :<math>\Gamma(z) = \lim_{n \to \infty} \frac{n! \; n^z}{z \; (z+1)\cdots(z+n)} </math>과 다음 무한곱의 연분수 표현을 사용하여 얻을 수 있다 :<math>1+{q \over 1+q + } {q^2 \over 1+q^2+} {q^3 \over 1+q^3} \cdots=\frac{(q^2;q^4)_{\infty}^2}{(q^1;q^4)_{\infty}(q^3;q^4)_{\infty}}</math>
  
 
+
* [[월리스 곱 (Wallis product formula)]]:<math>\prod_{k=1}^{\infty}\frac{4k^2-1}{4k^2}=\frac{2}{\pi}</math>
  
 
 
  
<h5>역사</h5>
+
==역사==
  
<h5>[http://www.google.com/search?hl=en&tbs=tl:1&q=%EC%88%98%ED%95%99%EC%82%AC%EC%97%B0%ED%91%9C%EB%A9%94%EB%AA%A8  ]</h5>
+
* [[수학사 연표]]
  
 
 
  
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
* [[수학사연표 (역사)|수학사연표]]
 
  
 
+
==메모==
 
 
 
 
 
 
<h5>메모</h5>
 
  
 
'''[Alladi&Gordon1993] 277-278p'''
 
'''[Alladi&Gordon1993] 277-278p'''
35번째 줄: 30번째 줄:
 
<math>R(a,b)=\frac{f(a,a^{-1}b)}{f(aq,a^{-1}b)}-a=\frac{R^{N}(a,b)}{R^{D}(a,b)}=1+\frac{bq}{1+aq} {\ \atop+} \frac{bq^2}{1+aq^2}{\ \atop+} \frac{bq^3}{1} {\ \atop+\dots}</math>
 
<math>R(a,b)=\frac{f(a,a^{-1}b)}{f(aq,a^{-1}b)}-a=\frac{R^{N}(a,b)}{R^{D}(a,b)}=1+\frac{bq}{1+aq} {\ \atop+} \frac{bq^2}{1+aq^2}{\ \atop+} \frac{bq^3}{1} {\ \atop+\dots}</math>
  
<math>R(1,1)=\frac{R^{N}(1,1)}{R^{D}(1,1)}=1+{q \over 1+q + } {q^2 \over 1+q^2+} {q^3 \over 1+q^3} } \cdots=\frac{(q^2;q^4)_{\infty}^2}{(q^1;q^4)_{\infty}(q^3;q^4)_{\infty}}</math>
+
<math>R(1,1)=\frac{R^{N}(1,1)}{R^{D}(1,1)}=1+{q \over 1+q + } {q^2 \over 1+q^2+} {q^3 \over 1+q^3} \cdots=\frac{(q^2;q^4)_{\infty}^2}{(q^1;q^4)_{\infty}(q^3;q^4)_{\infty}}</math>
 
 
* Math Overflow http://mathoverflow.net/search?q=
 
 
 
 
 
  
 
 
  
<h5>관련된 항목들</h5>
+
==관련된 항목들==
  
 
* [[초기하함수 2F1의 contiguous 관계]]
 
* [[초기하함수 2F1의 contiguous 관계]]
 
* [[원주율과 연분수 Brouncker 의 공식]]
 
* [[원주율과 연분수 Brouncker 의 공식]]
  
 
 
 
 
 
 
 
 
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역</h5>
 
 
*  단어사전<br>
 
** http://translate.google.com/#en|ko|
 
** http://ko.wiktionary.org/wiki/
 
* 발음사전 http://www.forvo.com/search/
 
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=
 
* [http://www.kss.or.kr/pds/sec/dic.aspx 한국통계학회 통계학 용어 온라인 대조표]
 
* [http://www.nktech.net/science/term/term_l.jsp?l_mode=cate&s_code_cd=MA 남·북한수학용어비교]
 
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
 
 
 
 
 
 
 
 
 
 
 
<h5>사전 형태의 자료</h5>
 
 
* http://ko.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/
 
* [http://eom.springer.de/default.htm The Online Encyclopaedia of Mathematics]
 
* [http://dlmf.nist.gov NIST Digital Library of Mathematical Functions]
 
* [http://eqworld.ipmnet.ru/ The World of Mathematical Equations]
 
 
 
 
 
 
 
 
<h5>리뷰논문, 에세이, 강의노트</h5>
 
 
 
 
 
 
 
 
 
 
 
<h5>관련논문</h5>
 
 
* http://www.jstor.org/action/doBasicSearch?Query=
 
* http://www.ams.org/mathscinet
 
* http://dx.doi.org/
 
  
 
+
==매스매티카 파일 및 계산 리소스==
 +
* https://docs.google.com/file/d/0B8XXo8Tve1cxdHJHUmNIN0E5YTA/edit
  
 
 
  
<h5>관련도서</h5>
+
==관련논문==
 +
* Cao, Xiaodong, and Cristinel Mortici. “Multiple-Correction and Summation of the Rational Series.” arXiv:1511.00198 [math], October 31, 2015. http://arxiv.org/abs/1511.00198.
 +
* Cao, Xiaodong, Yoshio Tanigawa, and Wenguang Zhai. “The Fastest Possible Continued Fraction Approximations of a Class of Functions.” arXiv:1508.00176 [math], August 1, 2015. http://arxiv.org/abs/1508.00176.
 +
* Ramanathan, K. G. 1987. “Hypergeometric Series and Continued Fractions.” Indian Academy of Sciences. Proceedings. Mathematical Sciences 97 (1-3): 277–296 (1988). doi:10.1007/BF02837830.
  
*  도서내검색<br>
+
[[분류:연분수]]
** http://books.google.com/books?q=
 
** http://book.daum.net/search/contentSearch.do?query=
 

2020년 11월 16일 (월) 06:29 기준 최신판

개요

  • 감마함수의 비를 다음과 같이 연분수로 표현가능

\[\frac{\Gamma \left(\frac{1}{4} (-n+x+1)\right) \Gamma \left(\frac{1}{4} (n+x+1)\right)}{\Gamma \left(\frac{1}{4} (-n+x+3)\right) \Gamma \left(\frac{1}{4} (n+x+3)\right)}=\cfrac{4}{x-\cfrac{n^2-1}{2 x-\cfrac{n^2-9}{2 x-\cfrac{n^2-25}{2 x-\cfrac{n^2-49}{2 x-\cfrac{n^2-81}{2 x-\cfrac{n^2-121}{2 x-\cfrac{n^2-169}{2 x-\cfrac{n^2-225}{2 x-\cfrac{n^2-289}{2 x-\cdots}}}}}}}}}}\]


감마함수와 무한곱

정리

\[\frac{\Gamma(\frac{1}{4})\Gamma(\frac{3}{4})}{\Gamma(\frac{2}{4})\Gamma(\frac{2}{4})}=\sqrt{2}\]

증명

감마함수의 다음 표현 \[\Gamma(z) = \lim_{n \to \infty} \frac{n! \; n^z}{z \; (z+1)\cdots(z+n)} \]과 다음 무한곱의 연분수 표현을 사용하여 얻을 수 있다 \[1+{q \over 1+q + } {q^2 \over 1+q^2+} {q^3 \over 1+q^3} \cdots=\frac{(q^2;q^4)_{\infty}^2}{(q^1;q^4)_{\infty}(q^3;q^4)_{\infty}}\] ■


역사


메모

[Alladi&Gordon1993] 277-278p

Partition identities and a continued fraction of Ramanujan

\(R(a,b)=\frac{f(a,a^{-1}b)}{f(aq,a^{-1}b)}-a=\frac{R^{N}(a,b)}{R^{D}(a,b)}=1+\frac{bq}{1+aq} {\ \atop+} \frac{bq^2}{1+aq^2}{\ \atop+} \frac{bq^3}{1} {\ \atop+\dots}\)

\(R(1,1)=\frac{R^{N}(1,1)}{R^{D}(1,1)}=1+{q \over 1+q + } {q^2 \over 1+q^2+} {q^3 \over 1+q^3} \cdots=\frac{(q^2;q^4)_{\infty}^2}{(q^1;q^4)_{\infty}(q^3;q^4)_{\infty}}\)


관련된 항목들


매스매티카 파일 및 계산 리소스


관련논문

  • Cao, Xiaodong, and Cristinel Mortici. “Multiple-Correction and Summation of the Rational Series.” arXiv:1511.00198 [math], October 31, 2015. http://arxiv.org/abs/1511.00198.
  • Cao, Xiaodong, Yoshio Tanigawa, and Wenguang Zhai. “The Fastest Possible Continued Fraction Approximations of a Class of Functions.” arXiv:1508.00176 [math], August 1, 2015. http://arxiv.org/abs/1508.00176.
  • Ramanathan, K. G. 1987. “Hypergeometric Series and Continued Fractions.” Indian Academy of Sciences. Proceedings. Mathematical Sciences 97 (1-3): 277–296 (1988). doi:10.1007/BF02837830.