"초기하함수 2F1의 contiguous 관계"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로)
 
(같은 사용자의 중간 판 10개는 보이지 않습니다)
1번째 줄: 1번째 줄:
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 수학노트 원문주소</h5>
+
==개요==
  
 
+
*  두 초기하급수가 있을 때, 세 파라미터가 정수만큼 다른 경우 contiguous라 함
 +
*  예
 +
** <math>_2F_1(a,b;c;z)</math>와 <math>_2F_1(a\pm1,b;c;z)</math>
 +
** <math>_2F_1(a,b;c;z)</math>와 <math>_2F_1(a,b;c\pm1;z)</math>
 +
* <math>_2F_1(a,b;c;z)</math>와 contiguous 관계를 갖는 두 초기하급수가 있을 때, 이 세 초기하급수 사이에는 a,b,c,z를 계수로 갖는 선형종속 관계가 성립
 +
:<math>a(z-1)F (a + 1, b; c; z) + (2a-c-az + bz)F(a, b; c; z) + (c - a)F(a - 1, b; c; z) = 0</math>
 +
:<math>aF(a + 1, b; c; z) - (c - 1)F (a, b; c - 1; z) + (c - a - 1)F (a, b; c; z) = 0</math>
 +
:<math>aF(a + 1, b; c; z) - bF(a, b + 1; c; z) + (b - a)F(a, b; c; z) = 0</math>
  
 
+
  
==개요</h5>
+
==메모==
  
* 두 초기하급수가 있을 때, 세 파라미터가 정수만큼 다른 경우 contiguous라 함<br>
+
   
*  예<br><math>_2F_1(a,b;c;z)</math>와 <math>_2F_1(a\pm1,b;c;z)</math><br><math>_2F_1(a,b;c;z)</math>와 <math>_2F_1(a,b;c\pm1;z)</math><br>
 
* <math>_2F_1(a,b;c;z)</math>와 contiguous 관계를 갖는 두 초기하급수가 있을 때, 이 세 초기하급수 사이에는 a,b,c,z를 계수로 갖는 선형종속 관계가 성립<br><math>a(z-1)F (a + 1, b; c; z) + (2a-c-az + bz)F(a, b; c; z) + (c - a)F(a - 1, b; c; z) = 0</math><br><math>aF(a + 1, b; c; z) - (c - 1)F (a, b; c - 1; z) + (c - a - 1)F (a, b; c; z) = 0</math><br><math>aF(a + 1, b; c; z) - bF(a, b + 1; c; z) + (b - a)F(a, b; c; z) = 0</math><br>
 
  
 
+
  
 
+
==관련된 항목들==
 
 
==역사</h5>
 
 
 
 
 
 
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
* [[수학사연표 (역사)|수학사연표]]
 
 
 
 
 
 
 
 
 
 
 
==메모</h5>
 
 
 
 
 
 
 
 
 
 
 
==관련된 항목들</h5>
 
  
 
* [[가우스의 연분수]]
 
* [[가우스의 연분수]]
  
 
+
   
 
 
 
 
 
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역</h5>
 
 
 
* 단어사전<br>
 
** [http://www.google.com/dictionary?langpair=en%7Cko&q=contiguous http://www.google.com/dictionary?langpair=en|ko&q=contiguous]
 
** http://ko.wiktionary.org/wiki/
 
* 발음사전 http://www.forvo.com/search/
 
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=contiguous
 
* [http://www.nktech.net/science/term/term_l.jsp?l_mode=cate&s_code_cd=MA 남·북한수학용어비교]
 
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
==사전 형태의 자료</h5>
 
 
 
* http://ko.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/
 
* [http://eom.springer.de/default.htm The Online Encyclopaedia of Mathematics]
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 
* [http://eqworld.ipmnet.ru/ The World of Mathematical Equations]
 
 
 
 
 
 
 
 
 
 
 
==리뷰논문, 에세이, 강의노트</h5>
 
 
 
 
 
 
 
 
 
 
 
==관련논문</h5>
 
 
 
* http://www.jstor.org/action/doBasicSearch?Query=
 
* http://www.ams.org/mathscinet
 
* http://dx.doi.org/
 
 
 
 
 
 
 
 
 
 
 
==관련도서</h5>
 
 
 
*  도서내검색<br>
 
** http://books.google.com/books?q=
 
** http://book.daum.net/search/contentSearch.do?query=
 
  
 
+
  
 
+
==수학용어번역==
 +
* {{학술용어집|url=contiguous}}
  
==링크</h5>
+
== 관련논문 ==
  
* [http://www.ams.org/news/math-in-the-media/mathdigest-index Summaries of Media Coverage of Math]
+
* Akihito Ebisu, Katsunori Iwasaki, Three-Term Relations for 3F2(1), arXiv:1604.00480[math.CA], April 02 2016, http://arxiv.org/abs/1604.00480v1
*  구글 블로그 검색<br>
 
** http://blogsearch.google.com/blogsearch?q=
 

2020년 12월 28일 (월) 02:58 기준 최신판

개요

  • 두 초기하급수가 있을 때, 세 파라미터가 정수만큼 다른 경우 contiguous라 함
    • \(_2F_1(a,b;c;z)\)와 \(_2F_1(a\pm1,b;c;z)\)
    • \(_2F_1(a,b;c;z)\)와 \(_2F_1(a,b;c\pm1;z)\)
  • \(_2F_1(a,b;c;z)\)와 contiguous 관계를 갖는 두 초기하급수가 있을 때, 이 세 초기하급수 사이에는 a,b,c,z를 계수로 갖는 선형종속 관계가 성립

\[a(z-1)F (a + 1, b; c; z) + (2a-c-az + bz)F(a, b; c; z) + (c - a)F(a - 1, b; c; z) = 0\] \[aF(a + 1, b; c; z) - (c - 1)F (a, b; c - 1; z) + (c - a - 1)F (a, b; c; z) = 0\] \[aF(a + 1, b; c; z) - bF(a, b + 1; c; z) + (b - a)F(a, b; c; z) = 0\]


메모

관련된 항목들



수학용어번역

관련논문