"Klein-Gordon equation"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(피타고라스님이 이 페이지를 개설하였습니다.)
 
 
(사용자 3명의 중간 판 23개는 보이지 않습니다)
1번째 줄: 1번째 줄:
 +
* [[클라인-고든_방정식]]
  
 +
 +
 +
 +
 +
==introduction==
 +
 +
* in condensed matter physics it describes long wavelength optical phonons
 +
*  there are real KG equation and complex KG equation
 +
** real case describes electrically neutral particles
 +
** complex case describes charged particles
 +
* <math>(\Box + m^2) \psi = 0</math> i.e. <math>(\Box + m^2) \psi =\psi_{tt}-\psi_{xx}-\psi_{yy}-\psi_{zz}+m^2\psi=0</math>
 +
*  correct interpretations of <math>\phi</math> requires the idea of quantum field rather than the particle wavefunction
 +
** negative probability density -> charge density
 +
*  Dirac suggested Dirac sea by invoking the exclusion principle and then KG equation only applicable to spinless particles
 +
** for example, <math>\pi</math>-meson
 +
* Thus the Dirac equation comes in to deal with spin-<math>1/2</math> particles.
 +
 +
 +
 +
 +
 +
==Lorentz invariant commutation relation==
 +
 +
 +
 +
 +
 +
 +
 +
==related items==
 +
 +
* [[special and general relativity]]
 +
* [[sine-Gordon equation]]
 +
[[분류:physics]]
 +
[[분류:math and physics]]
 +
[[분류:QFT]]
 +
[[분류:migrate]]

2020년 12월 28일 (월) 04:16 기준 최신판



introduction

  • in condensed matter physics it describes long wavelength optical phonons
  • there are real KG equation and complex KG equation
    • real case describes electrically neutral particles
    • complex case describes charged particles
  • \((\Box + m^2) \psi = 0\) i.e. \((\Box + m^2) \psi =\psi_{tt}-\psi_{xx}-\psi_{yy}-\psi_{zz}+m^2\psi=0\)
  • correct interpretations of \(\phi\) requires the idea of quantum field rather than the particle wavefunction
    • negative probability density -> charge density
  • Dirac suggested Dirac sea by invoking the exclusion principle and then KG equation only applicable to spinless particles
    • for example, \(\pi\)-meson
  • Thus the Dirac equation comes in to deal with spin-\(1/2\) particles.



Lorentz invariant commutation relation

related items