"Brownian motion"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
 
(사용자 3명의 중간 판 29개는 보이지 않습니다)
1번째 줄: 1번째 줄:
<h5>introduction</h5>
+
==introduction==
  
* http://www.maths.ox.ac.uk/taxonomy/term/1098
+
* scaling limit of a random walk on a two dimensional grid
 +
** the limit of random walk as the time and space increments go to zero.
 +
* Mandelbrot conjecture
  
 
+
  
 
+
  
<h5>history</h5>
+
==heat equation and Brownian motion==
  
* http://www.google.com/search?hl=en&tbs=tl:1&q=
+
* [http://pythagoras0.springnote.com/pages/5650131 열방정식]
 +
* [http://stat.math.uregina.ca/%7Ekozdron/Research/UgradTalks/BM_and_Heat/heat_and_BM.pdf http://stat.math.uregina.ca/~kozdron/Research/UgradTalks/BM_and_Heat/heat_and_BM.pdf]
  
 
+
  
 
+
  
<h5>related items</h5>
+
==Wiener process==
  
 
+
* synonym with Brown motion
 +
* example of a Levy process
  
 
+
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">encyclopedia</h5>
+
  
* http://en.wikipedia.org/wiki/Brownian_motion
+
* http://en.wikipedia.org/wiki/
 
* http://www.scholarpedia.org/
 
* http://www.proofwiki.org/wiki/
 
* Princeton companion to mathematics([[2910610/attachments/2250873|Companion_to_Mathematics.pdf]])
 
  
 
+
==Mandelbrot conjecture==
  
 
+
* the Hausdorff dimension of the outer boundary of a planar Brownian motion equals 4=3
 +
* fractal dimension of the frontier of a two dimensional Browninan path is 4/3
 +
* [[Schramm–Loewner evolution (SLE)]]
  
<h5>books</h5>
 
  
* Paul L´evy: Processus stochastiques et mouvement brownien, 2nd ed. Paris: Gauthier-Villars Paris 1965.
+
==related items==
* [[2010년 books and articles]]<br>
 
* http://gigapedia.info/1/brownian
 
* http://gigapedia.info/1/brown+motion
 
* http://gigapedia.info/1/
 
* http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
 
  
 
+
* [[Schramm–Loewner evolution (SLE)]]
 +
* [[Ito calculus]]
  
 
+
  
<h5>expositions and lecture notes</h5>
 
  
* http://www.thehcmr.org/issue2_2/stats_corner.pdf
 
* An Invitation to Sample Paths of Brownian Motion
 
  
 
+
==encyclopedia==
  
 
+
* http://en.wikipedia.org/wiki/Brownian_motion
 +
* http://en.wikipedia.org/wiki/Wiener_process
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">articles</h5>
+
  
* [http://arxiv.org/abs/math/0007042 Critical exponents, conformal invariance and planar Brownian motion]<br>
+
** [[Wendelin Werner]], 2000<br>
 
* http://www.ams.org/mathscinet
 
* http://www.zentralblatt-math.org/zmath/en/
 
* http://arxiv.org/
 
* http://www.pdf-search.org/
 
* http://pythagoras0.springnote.com/
 
* [http://math.berkeley.edu/%7Ereb/papers/index.html http://math.berkeley.edu/~reb/papers/index.html]
 
* http://dx.doi.org/
 
  
 
+
==books==
  
 
+
* Paul L´evy: Processus stochastiques et mouvement brownien, 2nd ed. Paris: Gauthier-Villars Paris 1965.
  
<h5>question and answers(Math Overflow)</h5>
+
  
* http://mathoverflow.net/search?q=
+
==expositions and lecture notes==
* http://mathoverflow.net/search?q=
 
  
 
+
* [http://research.microsoft.com/en-us/um/people/schramm/memorial/talk-CDM.ps Scaling Limits of Random Processes and the Outer Boundary of Planar Brownian Motion (2000)]
 
+
* [http://www.nber.org/%7Enroussan/thesis/thesis.pdf The Mandelbrot’s Conjecture and Critical Exponents for Brownian Motion]
 
+
** Nikolai Roussanov, 2001
 
+
* [http://www.thehcmr.org/issue2_2/stats_corner.pdf Conformal Invariance in the Scaling Limit of Critical Planar Percolation]
<h5>blogs</h5>
+
* [http://stat-www.berkeley.edu/%7Eperes/bmall.pdf An Invitation to Sample Paths of Brownian Motion]
 
+
* http://www.maths.ox.ac.uk/taxonomy/term/1098
* 구글 블로그 검색<br>
 
*http://blogsearch.google.com/blogsearch?q=<br>
 
** http://blogsearch.google.com/blogsearch?q=
 
* http://ncatlab.org/nlab/show/HomePage
 
 
 
 
 
  
 
+
  
<h5>experts on the field</h5>
+
  
* http://arxiv.org/
+
==articles==
 +
* Bodineau, Thierry, Isabelle Gallagher, and Laure Saint-Raymond. “The Brownian Motion as the Limit of a Deterministic System of Hard-Spheres.” arXiv:1305.3397 [math-Ph], May 15, 2013. http://arxiv.org/abs/1305.3397.
 +
* Camia, Federico, Alberto Gandolfi, and Matthew Kleban. “Conformal Correlation Functions in the Brownian Loop Soup.” arXiv:1501.05945 [cond-Mat, Physics:hep-Th, Physics:math-Ph], January 23, 2015. http://arxiv.org/abs/1501.05945.
 +
* [http://arxiv.org/abs/math/0506337 On the scaling limit of simple random walk excursion measure in the plane] Michael J. Kozdron, 2005
 +
* The dimension of the planar Brownian frontier is 4/3 G. F. Lawler, O. Schramm, and W. Werner, Math. Res. Lett., 8:401–411, 2001.
 +
* [http://arxiv.org/abs/math/0007042 Critical exponents, conformal invariance and planar Brownian motion][[Wendelin Werner]], 2000
  
 
+
==question and answers(Math Overflow)==
  
 
+
* [http://mathoverflow.net/questions/43015/the-conditions-in-the-definition-of-brownian-motion ]http://mathoverflow.net/questions/43015/the-conditions-in-the-definition-of-brownian-motion
  
<h5>links</h5>
+
[[분류:integrable systems]]
 +
[[분류:math and physics]]
 +
[[분류:migrate]]
  
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier]
+
==메타데이터==
* [http://pythagoras0.springnote.com/pages/1947378 수식표현 안내]
+
===위키데이터===
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]
+
* ID :  [https://www.wikidata.org/wiki/Q178036 Q178036]
* http://functions.wolfram.com/
+
===Spacy 패턴 목록===
 +
* [{'LOWER': 'brownian'}, {'LEMMA': 'motion'}]

2021년 2월 17일 (수) 01:32 기준 최신판

introduction

  • scaling limit of a random walk on a two dimensional grid
    • the limit of random walk as the time and space increments go to zero.
  • Mandelbrot conjecture



heat equation and Brownian motion



Wiener process

  • synonym with Brown motion
  • example of a Levy process




Mandelbrot conjecture

  • the Hausdorff dimension of the outer boundary of a planar Brownian motion equals 4=3
  • fractal dimension of the frontier of a two dimensional Browninan path is 4/3
  • Schramm–Loewner evolution (SLE)


related items



encyclopedia



books

  • Paul L´evy: Processus stochastiques et mouvement brownien, 2nd ed. Paris: Gauthier-Villars Paris 1965.


expositions and lecture notes



articles

question and answers(Math Overflow)

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'brownian'}, {'LEMMA': 'motion'}]