Ito calculus
introduction
- start with Brownian motion
- http://www.mathematica-journal.com/issue/v9i4/contents/StochasticIntegrals/StochasticIntegrals_1.html
- http://www-stat.wharton.upenn.edu/~steele/Publications/PDF/AoMtSC.pdf
basic probability theory
Ito SDE
- def
A stochastic process \(X(t)\) is said to satisfy an Ito SDE, written as, \[ dX(t)= \alpha(X(t),t)dt+\beta(X(t),t)dW(t)\label{ito} \] if for \(t\ge 0\) it satisfies the integral equation, \[ X(t)= X(0) +\int_{0}^{t}\alpha(X(\tau),\tau)\,d\tau+\int_{0}^{t}\beta(X(\tau),\tau)dW(\tau) \]
Kolmogorov equation
- Fokker-Planck equations, also known as Fokker-Planck-Kolmogorov equations or forward Kolmogorov equations, are deterministic equations describing how probability density functions evolve
- let \(p(x,t)\) be the p.d.f. of the stochastic process \(X(t)\) satisfying \ref{ito}. Then
\[ \frac{\partial p}{\partial t} = -\frac{\partial(\alpha(x,t)p)}{\partial x}+\frac{1}{2}\frac{\partial^2 (\beta^2(x,t)p)}{\partial x^2} \]
multi-dimensional version
- see Klebaner2005
- consider the following Ito SDE
\begin{equation}\label{s1_000} {\rm d} X(t) = f(X(t)){\rm d}t + \sigma(X(t)) {\rm d} B(t), \qquad X(0) = x_0\in \mathbb{R}^{d}, \end{equation} where \(X(t)=(X_1(t),X_2(t),\cdots,X_d(t))^T \in \mathbb{R}^d\), \(f=(f_1, f_2,\cdots,f_d)^T: \mathbb{R}^d\to \mathbb{R}^d\), \(\sigma=(\sigma_{ij})_{d\times n}: \mathbb{R}^d \to \mathbb{R}^{d\times n}\). \(B(t)\) is an \(n\)-dimensional Brownian motion, and \(f\) and \(g\) satisfy certain smoothness conditions. The probability density function \(p(x,t)\) for the solution \(X(t)\) in (\ref{s1_000}) can be expressed as \begin{align}\label{s1_001} \frac{\partial p(x, t)}{\partial t} &= - \sum^{d}_{i=1}\frac{\partial }{\partial x_{i}} \left[f_{i}(x) p(x, t)\right] + \sum^{d}_{i,j=1} \frac{\partial ^2}{\partial x_{i}\partial x_{j}}\left[D_{ij}(x)p(x, t) \right], \end{align} where \(D_{ij}(x)= \sum_{k=1}^n \sigma_{ik}(x)\sigma_{kj}(x)\).
example
- Loewner equantion
computational resource
- http://mathematica.stackexchange.com/questions/30558/solving-a-stochastic-differential-equation?rq=1
- http://mathematica.stackexchange.com/questions/83645/martingale-pricing-simulation-random-walk-stock-price
노트
말뭉치
- Vlad Gheorghiu (CMU) Ito calculus in a nutshell April 7, 2011 4 / 23 Elementary random processes If we now calculate expectations of Si it does matter what information we have.[1]
- Itos lemma is often used in Ito calculus to nd the dierentials of a stochastic process that depends on time.[2]
- The Ito calculus is about systems driven by white noise.[3]
- This test of survival under the limit dt=0 and sum determines the rules ( Ito calculus ) at the beginning of this section.[4]
- 1. First Contact with Ito Calculus From the practitioners point of view, the Ito calculus is a tool for manip- ulating those stochastic processes which are most closely related to Brow- nian motion.[5]
- Abstract The Functional Ito calculus is a non-anticipative functional calculus which extends the Ito calculus to path-dependent functionals of stochas- tic processes.[6]
- The Functional Ito calculus has led to various applications in the study of path-dependent functionals of stochastic processes.[6]
소스
메타데이터
위키데이터
- ID : Q947053
Spacy 패턴 목록
- [{'LOWER': 'ito'}, {'LEMMA': 'calculus'}]
- [{'LOWER': 'itō'}, {'LEMMA': 'calculus'}]