"Brownian motion"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
 
(사용자 2명의 중간 판 9개는 보이지 않습니다)
1번째 줄: 1번째 줄:
 
==introduction==
 
==introduction==
  
*  scaling limit of a random walk on a two dimensional grid<br>
+
*  scaling limit of a random walk on a two dimensional grid
 
** the limit of random walk as the time and space increments go to zero.
 
** the limit of random walk as the time and space increments go to zero.
 
* Mandelbrot conjecture
 
* Mandelbrot conjecture
  
 
+
  
 
+
  
 
==heat equation and Brownian motion==
 
==heat equation and Brownian motion==
14번째 줄: 14번째 줄:
 
* [http://stat.math.uregina.ca/%7Ekozdron/Research/UgradTalks/BM_and_Heat/heat_and_BM.pdf http://stat.math.uregina.ca/~kozdron/Research/UgradTalks/BM_and_Heat/heat_and_BM.pdf]
 
* [http://stat.math.uregina.ca/%7Ekozdron/Research/UgradTalks/BM_and_Heat/heat_and_BM.pdf http://stat.math.uregina.ca/~kozdron/Research/UgradTalks/BM_and_Heat/heat_and_BM.pdf]
  
 
+
  
 
+
  
 
==Wiener process==
 
==Wiener process==
23번째 줄: 23번째 줄:
 
* example of a Levy process
 
* example of a Levy process
  
 
+
  
 
+
  
 
+
  
 
==Mandelbrot conjecture==
 
==Mandelbrot conjecture==
35번째 줄: 35번째 줄:
 
* [[Schramm–Loewner evolution (SLE)]]
 
* [[Schramm–Loewner evolution (SLE)]]
  
 
 
 
 
 
 
 
 
 
==history==
 
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
 
 
 
 
 
 
  
 
==related items==
 
==related items==
54번째 줄: 41번째 줄:
 
* [[Ito calculus]]
 
* [[Ito calculus]]
  
 
+
  
 
 
  
 
 
  
 
==encyclopedia==
 
==encyclopedia==
64번째 줄: 49번째 줄:
 
* http://en.wikipedia.org/wiki/Brownian_motion
 
* http://en.wikipedia.org/wiki/Brownian_motion
 
* http://en.wikipedia.org/wiki/Wiener_process
 
* http://en.wikipedia.org/wiki/Wiener_process
* http://en.wikipedia.org/wiki/
 
* http://www.scholarpedia.org/
 
* http://www.proofwiki.org/wiki/
 
* Princeton companion to mathematics([[2910610/attachments/2250873|Companion_to_Mathematics.pdf]])
 
  
 
+
  
 
+
  
 
==books==
 
==books==
  
 
* Paul L´evy: Processus stochastiques et mouvement brownien, 2nd ed. Paris: Gauthier-Villars Paris 1965.
 
* Paul L´evy: Processus stochastiques et mouvement brownien, 2nd ed. Paris: Gauthier-Villars Paris 1965.
* [[2010년 books and articles]]<br>
 
* http://gigapedia.info/1/brownian
 
* http://gigapedia.info/1/brown+motion
 
* http://gigapedia.info/1/levy
 
* http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
 
 
 
 
  
 
+
  
 
==expositions and lecture notes==
 
==expositions and lecture notes==
  
 
* [http://research.microsoft.com/en-us/um/people/schramm/memorial/talk-CDM.ps Scaling Limits of Random Processes and the Outer Boundary of Planar Brownian Motion (2000)]
 
* [http://research.microsoft.com/en-us/um/people/schramm/memorial/talk-CDM.ps Scaling Limits of Random Processes and the Outer Boundary of Planar Brownian Motion (2000)]
* [http://www.nber.org/%7Enroussan/thesis/thesis.pdf The Mandelbrot’s Conjecture and Critical Exponents for Brownian Motion]<br>
+
* [http://www.nber.org/%7Enroussan/thesis/thesis.pdf The Mandelbrot’s Conjecture and Critical Exponents for Brownian Motion]
 
** Nikolai Roussanov, 2001
 
** Nikolai Roussanov, 2001
 
* [http://www.thehcmr.org/issue2_2/stats_corner.pdf Conformal Invariance in the Scaling Limit of Critical Planar Percolation]
 
* [http://www.thehcmr.org/issue2_2/stats_corner.pdf Conformal Invariance in the Scaling Limit of Critical Planar Percolation]
95번째 줄: 69번째 줄:
 
* http://www.maths.ox.ac.uk/taxonomy/term/1098
 
* http://www.maths.ox.ac.uk/taxonomy/term/1098
  
 
+
  
 
+
  
 
==articles==
 
==articles==
 
+
* Bodineau, Thierry, Isabelle Gallagher, and Laure Saint-Raymond. “The Brownian Motion as the Limit of a Deterministic System of Hard-Spheres.” arXiv:1305.3397 [math-Ph], May 15, 2013. http://arxiv.org/abs/1305.3397.
 +
* Camia, Federico, Alberto Gandolfi, and Matthew Kleban. “Conformal Correlation Functions in the Brownian Loop Soup.” arXiv:1501.05945 [cond-Mat, Physics:hep-Th, Physics:math-Ph], January 23, 2015. http://arxiv.org/abs/1501.05945.
 
* [http://arxiv.org/abs/math/0506337 On the scaling limit of simple random walk excursion measure in the plane] Michael J. Kozdron, 2005
 
* [http://arxiv.org/abs/math/0506337 On the scaling limit of simple random walk excursion measure in the plane] Michael J. Kozdron, 2005
 
* The dimension of the planar Brownian frontier is 4/3 G. F. Lawler, O. Schramm, and W. Werner, Math. Res. Lett., 8:401–411, 2001.
 
* The dimension of the planar Brownian frontier is 4/3 G. F. Lawler, O. Schramm, and W. Werner, Math. Res. Lett., 8:401–411, 2001.
* [http://arxiv.org/abs/math/0007042 Critical exponents, conformal invariance and planar Brownian motion][[Wendelin Werner]], 2000<br>
+
* [http://arxiv.org/abs/math/0007042 Critical exponents, conformal invariance and planar Brownian motion][[Wendelin Werner]], 2000
* http://www.ams.org/mathscinet
 
* http://www.zentralblatt-math.org/zmath/en/
 
* http://arxiv.org/
 
* http://www.pdf-search.org/
 
* http://pythagoras0.springnote.com/
 
* [http://math.berkeley.edu/%7Ereb/papers/index.html http://math.berkeley.edu/~reb/papers/index.html]
 
* http://dx.doi.org/
 
 
 
 
 
 
 
 
 
  
 
==question and answers(Math Overflow)==
 
==question and answers(Math Overflow)==
  
 
* [http://mathoverflow.net/questions/43015/the-conditions-in-the-definition-of-brownian-motion ]http://mathoverflow.net/questions/43015/the-conditions-in-the-definition-of-brownian-motion
 
* [http://mathoverflow.net/questions/43015/the-conditions-in-the-definition-of-brownian-motion ]http://mathoverflow.net/questions/43015/the-conditions-in-the-definition-of-brownian-motion
* http://mathoverflow.net/search?q=
+
 
* http://mathoverflow.net/search?q=
 
 
[[분류:integrable systems]]
 
[[분류:integrable systems]]
 
[[분류:math and physics]]
 
[[분류:math and physics]]
 +
[[분류:migrate]]
 +
 +
==메타데이터==
 +
===위키데이터===
 +
* ID :  [https://www.wikidata.org/wiki/Q178036 Q178036]
 +
===Spacy 패턴 목록===
 +
* [{'LOWER': 'brownian'}, {'LEMMA': 'motion'}]

2021년 2월 17일 (수) 01:32 기준 최신판

introduction

  • scaling limit of a random walk on a two dimensional grid
    • the limit of random walk as the time and space increments go to zero.
  • Mandelbrot conjecture



heat equation and Brownian motion



Wiener process

  • synonym with Brown motion
  • example of a Levy process




Mandelbrot conjecture

  • the Hausdorff dimension of the outer boundary of a planar Brownian motion equals 4=3
  • fractal dimension of the frontier of a two dimensional Browninan path is 4/3
  • Schramm–Loewner evolution (SLE)


related items



encyclopedia



books

  • Paul L´evy: Processus stochastiques et mouvement brownien, 2nd ed. Paris: Gauthier-Villars Paris 1965.


expositions and lecture notes



articles

question and answers(Math Overflow)

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'brownian'}, {'LEMMA': 'motion'}]