"Modular invariance in math and physics"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) |
|||
(사용자 3명의 중간 판 36개는 보이지 않습니다) | |||
1번째 줄: | 1번째 줄: | ||
− | + | ==introduction== | |
− | Is it useful? | + | * Is it useful? |
+ | * Why is it important? | ||
+ | * Kac http://www.ams.org/publications/online-books/hmbrowder-hmbrowder-kac.pdf | ||
+ | * Modular invariance in lattice statistical mechanics http://aflb.ensmp.fr/AFLB-26j/aflb26jp287.pdf | ||
− | + | ||
− | + | ||
− | + | ==path integral in string theory== | |
− | + | * [[path integral and moduli space of Riemann surfaces]] :<math>Z=\sum_{g=0}^{\infty} g_{s}^{-\chi(\Sigma_{g})}Z_{g}=\sum_{g=0}^{\infty} g_{s}^{2g-2}Z_{g}=\frac{1}{g_{s}^2}Z_{0}+g_{s}^{0}Z_{1}+g_{s}^2Z_{2}+\cdots</math> | |
+ | * <math>Z_{1}</math> is an integral over <math>M_1 = \mathbb{H}/SL(2,\mathbb{Z})</math> i.e. the fundamental domain. | ||
+ | * string theory (symmetries, modular group) has a natural covariant UV cutoff! | ||
+ | ** compare with http://www.physics.thetangentbundle.net/wiki/Quantum_field_theory/Schwinger_proper_time_formalism | ||
− | + | ||
− | + | ||
− | + | ||
+ | |||
+ | ==circle method== | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | ==related items== | ||
+ | * [[modular invariant partition functions]] | ||
+ | * [[Kac-Peterson modular S-matrix]] | ||
+ | * [[Mock theta and physics]] | ||
+ | * [[Blackhole theory]] | ||
+ | * [[Hardy-Ramanujan tauberian theorem]] | ||
+ | |||
+ | |||
+ | ==questions== | ||
+ | * http://mathoverflow.net/questions/115225/the-dedekind-eta-function-in-physics | ||
+ | |||
+ | |||
+ | ==expositions== | ||
+ | * Nikolov, Nikolay M., and Ivan T. Todorov. 2004. “Lectures on Elliptic Functions and Modular Forms in Conformal Field Theory”. ArXiv e-print math-ph/0412039. http://arxiv.org/abs/math-ph/0412039. | ||
+ | * Goddard, Peter. ‘Modular Invariance and Infinite-Dimensional Algebras’. In Superstrings, edited by Peter G. O. Freund and K. T. Mahanthappa, 3–16. NATO ASI Series 175. Springer US, 1988. http://link.springer.com/chapter/10.1007/978-1-4613-1015-0_1. | ||
+ | * Lepowsky, J. “Affine Lie Algebras and Combinatorial Identities.” In Lie Algebras and Related Topics, edited by David Winter, 130–56. Lecture Notes in Mathematics 933. Springer Berlin Heidelberg, 1982. http://link.springer.com/chapter/10.1007/BFb0093358. | ||
+ | * Lepowsky, J. "Lie algebras and combinatorics." Proc. Internat. Congr. Math.(Helsinki, 1978)(to appear) (1978). http://www.mathunion.org/ICM/ICM1978.2/Main/icm1978.2.0579.0584.ocr.pdf | ||
+ | [[분류:개인노트]] | ||
+ | [[분류:Number theory and physics]] | ||
+ | [[분류:migrate]] | ||
+ | |||
+ | ==메타데이터== | ||
+ | ===위키데이터=== | ||
+ | * ID : [https://www.wikidata.org/wiki/Q60367 Q60367] | ||
+ | ===Spacy 패턴 목록=== | ||
+ | * [{'LOWER': 'modular'}, {'LEMMA': 'invariance'}] |
2021년 2월 17일 (수) 01:41 기준 최신판
introduction
- Is it useful?
- Why is it important?
- Kac http://www.ams.org/publications/online-books/hmbrowder-hmbrowder-kac.pdf
- Modular invariance in lattice statistical mechanics http://aflb.ensmp.fr/AFLB-26j/aflb26jp287.pdf
path integral in string theory
- path integral and moduli space of Riemann surfaces \[Z=\sum_{g=0}^{\infty} g_{s}^{-\chi(\Sigma_{g})}Z_{g}=\sum_{g=0}^{\infty} g_{s}^{2g-2}Z_{g}=\frac{1}{g_{s}^2}Z_{0}+g_{s}^{0}Z_{1}+g_{s}^2Z_{2}+\cdots\]
- \(Z_{1}\) is an integral over \(M_1 = \mathbb{H}/SL(2,\mathbb{Z})\) i.e. the fundamental domain.
- string theory (symmetries, modular group) has a natural covariant UV cutoff!
circle method
- modular invariant partition functions
- Kac-Peterson modular S-matrix
- Mock theta and physics
- Blackhole theory
- Hardy-Ramanujan tauberian theorem
questions
expositions
- Nikolov, Nikolay M., and Ivan T. Todorov. 2004. “Lectures on Elliptic Functions and Modular Forms in Conformal Field Theory”. ArXiv e-print math-ph/0412039. http://arxiv.org/abs/math-ph/0412039.
- Goddard, Peter. ‘Modular Invariance and Infinite-Dimensional Algebras’. In Superstrings, edited by Peter G. O. Freund and K. T. Mahanthappa, 3–16. NATO ASI Series 175. Springer US, 1988. http://link.springer.com/chapter/10.1007/978-1-4613-1015-0_1.
- Lepowsky, J. “Affine Lie Algebras and Combinatorial Identities.” In Lie Algebras and Related Topics, edited by David Winter, 130–56. Lecture Notes in Mathematics 933. Springer Berlin Heidelberg, 1982. http://link.springer.com/chapter/10.1007/BFb0093358.
- Lepowsky, J. "Lie algebras and combinatorics." Proc. Internat. Congr. Math.(Helsinki, 1978)(to appear) (1978). http://www.mathunion.org/ICM/ICM1978.2/Main/icm1978.2.0579.0584.ocr.pdf
메타데이터
위키데이터
- ID : Q60367
Spacy 패턴 목록
- [{'LOWER': 'modular'}, {'LEMMA': 'invariance'}]