"Umbral moonshine"의 두 판 사이의 차이
imported>Pythagoras0 |
Pythagoras0 (토론 | 기여) |
||
(사용자 2명의 중간 판 9개는 보이지 않습니다) | |||
1번째 줄: | 1번째 줄: | ||
==introduction== | ==introduction== | ||
* generalization of [[Mathieu moonshine]] | * generalization of [[Mathieu moonshine]] | ||
− | * Let | + | * Let <math>k\in \{1,2,3,4,6,8\}</math> or <math>\ell=k+1\in \{2,3,4,5,7,9\}</math> |
− | + | :<math> | |
\frac{24}{\ell-1}-1\in \{23,11,7,5,3,2\} | \frac{24}{\ell-1}-1\in \{23,11,7,5,3,2\} | ||
− | + | </math> | |
* properties | * properties | ||
− | ** primes dividing | + | ** primes dividing <math>|M_{24}|=244823040</math> |
− | ** | + | ** <math>(p+1)|24</math> |
− | ** | + | ** <math>\rm{PSL}(2,\mathbb{F}_p)\subset M_{24}</math> |
* there exists a relation between all 23 cases of umbral moonshine and K3 sigma models | * there exists a relation between all 23 cases of umbral moonshine and K3 sigma models | ||
==examples== | ==examples== | ||
− | === | + | ===<math>k=1</math>=== |
− | * [[Mathieu moonshine]] corresponds to | + | * [[Mathieu moonshine]] corresponds to <math>k=1</math> case |
− | * decomposition of | + | * decomposition of <math>Z_{K3}=2\varphi_{0,1}(\tau,z)</math> |
− | === | + | ===<math>k=2</math>=== |
− | * | + | * <math>k=2</math> moonshine with <math>2.M_{12}</math> |
* decomposition of weight 0 and index 2 Jacobi forms | * decomposition of weight 0 and index 2 Jacobi forms | ||
− | + | :<math> | |
Z_{X_2^{(1)}}=\left(\varphi_{0,1}(\tau,z)^2+2E_{4}\varphi_{-2,1}(\tau,z)^2\right)=144C_2(z;\tau)-\sum_{a=2}^{2}\Sigma_{X_2^{(1)}}^{(a)}B_2^{(a)}(z;\tau), | Z_{X_2^{(1)}}=\left(\varphi_{0,1}(\tau,z)^2+2E_{4}\varphi_{-2,1}(\tau,z)^2\right)=144C_2(z;\tau)-\sum_{a=2}^{2}\Sigma_{X_2^{(1)}}^{(a)}B_2^{(a)}(z;\tau), | ||
− | + | </math> | |
− | + | :<math>Z_{X_2^{(2)}}=\varphi^{(3)}=\left(\varphi_{0,1}(\tau,z)^2-E_{4}\varphi_{-2,1}(\tau,z)^2\right)/24=6C_2(z;\tau)-\sum_{a=2}^{2}\Sigma_{X_2^{(2)}}^{(a)}B_2^{(a)}(z;\tau)</math> | |
where | where | ||
− | + | :<math> | |
\Sigma_{X_2^{(1)}}^{(1)}=q^{-1/12}(18-1872q-26070q^2-\cdots), | \Sigma_{X_2^{(1)}}^{(1)}=q^{-1/12}(18-1872q-26070q^2-\cdots), | ||
− | + | </math> | |
− | + | :<math> | |
\Sigma_{X_2^{(1)}}^{(2)}=q^{-1/3}(3+510q+12804q^2+\cdots), | \Sigma_{X_2^{(1)}}^{(2)}=q^{-1/3}(3+510q+12804q^2+\cdots), | ||
− | + | </math> | |
− | + | :<math> | |
\Sigma_{X_2^{(2)}}^{(1)}=q^{-1/12}(1-16q-55q^2-144q^3-\cdots), | \Sigma_{X_2^{(2)}}^{(1)}=q^{-1/12}(1-16q-55q^2-144q^3-\cdots), | ||
− | + | </math> | |
− | + | :<math> | |
\Sigma_{X_2^{(2)}}^{(2)}=q^{-1/3}(-10q-44q^2-110q^3-\cdots) | \Sigma_{X_2^{(2)}}^{(2)}=q^{-1/3}(-10q-44q^2-110q^3-\cdots) | ||
− | + | </math> | |
==Jacobi form== | ==Jacobi form== | ||
* [[Jacobi forms]] | * [[Jacobi forms]] | ||
− | + | :<math> | |
\varphi_{0,1}(\tau,z)=4\left[\left(\frac{\theta_{10}(z;\tau)}{\theta_{10}(0;\tau)}\right)+\left(\frac{\theta_{00}(z;\tau)}{\theta_{00}(0;\tau)}\right)+\left(\frac{\theta_{01}(z;\tau)}{\theta_{01}(0;\tau)}\right)\right],\\ | \varphi_{0,1}(\tau,z)=4\left[\left(\frac{\theta_{10}(z;\tau)}{\theta_{10}(0;\tau)}\right)+\left(\frac{\theta_{00}(z;\tau)}{\theta_{00}(0;\tau)}\right)+\left(\frac{\theta_{01}(z;\tau)}{\theta_{01}(0;\tau)}\right)\right],\\ | ||
\varphi_{-2,1}(\tau,z)=\frac{-\theta_{11}(z;\tau)^2}{\eta(\tau)^6} | \varphi_{-2,1}(\tau,z)=\frac{-\theta_{11}(z;\tau)^2}{\eta(\tau)^6} | ||
− | + | </math> | |
− | == | + | ==<math>\mathcal{N}=4</math> super conformal algebra== |
− | * | + | * <math>c=6k</math>, <math>k\in \mathbb{Z}_{\geq 1}</math> |
* two types of representations : BPS and non-BPS | * two types of representations : BPS and non-BPS | ||
62번째 줄: | 62번째 줄: | ||
==umbral forms== | ==umbral forms== | ||
− | * | + | * <math>H^{(\ell)}=(H_r^{\ell})_{1\leq r \leq \ell-1}</math> is a vector valued mock modular form with shadows |
− | + | :<math> | |
\chi^{(\ell)}\cdot S_{r}^{(\ell)}=\sum_{n\in \mathbb{Z}}(2\ell n+r)q^{(2\ell n+r)^2/4\ell} | \chi^{(\ell)}\cdot S_{r}^{(\ell)}=\sum_{n\in \mathbb{Z}}(2\ell n+r)q^{(2\ell n+r)^2/4\ell} | ||
− | + | </math> | |
− | where | + | where <math>\chi^{(\ell)}=24/(\ell-1)</math> |
− | * For example, | + | * For example, <math>H^{(2)}</math> is a mock modular form with shadow <math>24\eta(\tau)^3</math> |
− | * More generally, we have Mckay-Thompson series for each conjugacy class | + | * More generally, we have Mckay-Thompson series for each conjugacy class <math>g\in G^{\ell}</math> |
− | + | :<math> | |
H_{r,g}^{(\ell)} | H_{r,g}^{(\ell)} | ||
− | + | </math> | |
92번째 줄: | 92번째 줄: | ||
* [[Characters of superconformal algebra and mock theta functions]] | * [[Characters of superconformal algebra and mock theta functions]] | ||
* [[K3 surfaces]] | * [[K3 surfaces]] | ||
+ | * [[Mock Jacobi form]] | ||
==computational resource== | ==computational resource== | ||
99번째 줄: | 100번째 줄: | ||
==expositions== | ==expositions== | ||
+ | * Shamit Kachru, Elementary introduction to Moonshine, arXiv:1605.00697 [hep-th], May 02 2016, http://arxiv.org/abs/1605.00697 | ||
* [https://docs.google.com/file/d/0B8XXo8Tve1cxMTBuZWJ0RUVzSmc/edit Cheng Umbral moonshine] | * [https://docs.google.com/file/d/0B8XXo8Tve1cxMTBuZWJ0RUVzSmc/edit Cheng Umbral moonshine] | ||
* [https://docs.google.com/file/d/0B8XXo8Tve1cxVWxBV3VGbWNZclk/edit Harvey Moonshine and mock modular forms] | * [https://docs.google.com/file/d/0B8XXo8Tve1cxVWxBV3VGbWNZclk/edit Harvey Moonshine and mock modular forms] | ||
− | |||
==articles== | ==articles== | ||
+ | * Miranda C. N. Cheng, John F. R. Duncan, Optimal Mock Jacobi Theta Functions, arXiv:1605.04480 [math.NT], May 14 2016, http://arxiv.org/abs/1605.04480 | ||
+ | * Tohru Eguchi, Yuji Sugawara, Duality in N=4 Liouville Theory and Moonshine Phenomena, http://arxiv.org/abs/1603.02903v1 | ||
+ | * Cheng, Miranda C. N., Francesca Ferrari, Sarah M. Harrison, and Natalie M. Paquette. “Landau-Ginzburg Orbifolds and Symmetries of K3 CFTs.” arXiv:1512.04942 [hep-Th], December 15, 2015. http://arxiv.org/abs/1512.04942. | ||
+ | * Cheng, Miranda C. N., Sarah M. Harrison, Shamit Kachru, and Daniel Whalen. ‘Exceptional Algebra and Sporadic Groups at c=12’. arXiv:1503.07219 [hep-Th], 24 March 2015. http://arxiv.org/abs/1503.07219. | ||
* Duncan, John F. R., Michael J. Griffin, and Ken Ono. ‘Proof of the Umbral Moonshine Conjecture’. arXiv:1503.01472 [math], 4 March 2015. http://arxiv.org/abs/1503.01472. | * Duncan, John F. R., Michael J. Griffin, and Ken Ono. ‘Proof of the Umbral Moonshine Conjecture’. arXiv:1503.01472 [math], 4 March 2015. http://arxiv.org/abs/1503.01472. | ||
* Duncan, John F. R., and Jeffrey A. Harvey. “The Umbral Moonshine Module for the Unique Unimodular Niemeier Root System.” arXiv:1412.8191 [hep-Th], December 28, 2014. http://arxiv.org/abs/1412.8191. | * Duncan, John F. R., and Jeffrey A. Harvey. “The Umbral Moonshine Module for the Unique Unimodular Niemeier Root System.” arXiv:1412.8191 [hep-Th], December 28, 2014. http://arxiv.org/abs/1412.8191. | ||
115번째 줄: | 120번째 줄: | ||
[[분류:Mock modular forms]] | [[분류:Mock modular forms]] | ||
[[분류:Number theory and physics]] | [[분류:Number theory and physics]] | ||
+ | [[분류:migrate]] | ||
+ | |||
+ | ==메타데이터== | ||
+ | ===위키데이터=== | ||
+ | * ID : [https://www.wikidata.org/wiki/Q7881385 Q7881385] | ||
+ | ===Spacy 패턴 목록=== | ||
+ | * [{'LOWER': 'umbral'}, {'LEMMA': 'moonshine'}] |
2021년 2월 17일 (수) 02:01 기준 최신판
introduction
- generalization of Mathieu moonshine
- Let \(k\in \{1,2,3,4,6,8\}\) or \(\ell=k+1\in \{2,3,4,5,7,9\}\)
\[ \frac{24}{\ell-1}-1\in \{23,11,7,5,3,2\} \]
- properties
- primes dividing \(|M_{24}|=244823040\)
- \((p+1)|24\)
- \(\rm{PSL}(2,\mathbb{F}_p)\subset M_{24}\)
- there exists a relation between all 23 cases of umbral moonshine and K3 sigma models
examples
\(k=1\)
- Mathieu moonshine corresponds to \(k=1\) case
- decomposition of \(Z_{K3}=2\varphi_{0,1}(\tau,z)\)
\(k=2\)
- \(k=2\) moonshine with \(2.M_{12}\)
- decomposition of weight 0 and index 2 Jacobi forms
\[ Z_{X_2^{(1)}}=\left(\varphi_{0,1}(\tau,z)^2+2E_{4}\varphi_{-2,1}(\tau,z)^2\right)=144C_2(z;\tau)-\sum_{a=2}^{2}\Sigma_{X_2^{(1)}}^{(a)}B_2^{(a)}(z;\tau), \] \[Z_{X_2^{(2)}}=\varphi^{(3)}=\left(\varphi_{0,1}(\tau,z)^2-E_{4}\varphi_{-2,1}(\tau,z)^2\right)/24=6C_2(z;\tau)-\sum_{a=2}^{2}\Sigma_{X_2^{(2)}}^{(a)}B_2^{(a)}(z;\tau)\] where \[ \Sigma_{X_2^{(1)}}^{(1)}=q^{-1/12}(18-1872q-26070q^2-\cdots), \] \[ \Sigma_{X_2^{(1)}}^{(2)}=q^{-1/3}(3+510q+12804q^2+\cdots), \] \[ \Sigma_{X_2^{(2)}}^{(1)}=q^{-1/12}(1-16q-55q^2-144q^3-\cdots), \] \[ \Sigma_{X_2^{(2)}}^{(2)}=q^{-1/3}(-10q-44q^2-110q^3-\cdots) \]
Jacobi form
\[ \varphi_{0,1}(\tau,z)=4\left[\left(\frac{\theta_{10}(z;\tau)}{\theta_{10}(0;\tau)}\right)+\left(\frac{\theta_{00}(z;\tau)}{\theta_{00}(0;\tau)}\right)+\left(\frac{\theta_{01}(z;\tau)}{\theta_{01}(0;\tau)}\right)\right],\\ \varphi_{-2,1}(\tau,z)=\frac{-\theta_{11}(z;\tau)^2}{\eta(\tau)^6} \]
\(\mathcal{N}=4\) super conformal algebra
- \(c=6k\), \(k\in \mathbb{Z}_{\geq 1}\)
- two types of representations : BPS and non-BPS
extremal Jacobi forms
mock modular form
umbral forms
- \(H^{(\ell)}=(H_r^{\ell})_{1\leq r \leq \ell-1}\) is a vector valued mock modular form with shadows
\[ \chi^{(\ell)}\cdot S_{r}^{(\ell)}=\sum_{n\in \mathbb{Z}}(2\ell n+r)q^{(2\ell n+r)^2/4\ell} \] where \(\chi^{(\ell)}=24/(\ell-1)\)
- For example, \(H^{(2)}\) is a mock modular form with shadow \(24\eta(\tau)^3\)
- More generally, we have Mckay-Thompson series for each conjugacy class \(g\in G^{\ell}\)
\[ H_{r,g}^{(\ell)} \]
umbral groups
\begin{array}{l|l|l|I|I} \ell & 2 & 3 & 4 & 5 & 7 & 9 \\ \hline G & M_{24} & M_{12} & & & &\\ \overline{G} & M_{24} & 2.M_{12} & 2.AGL_{3}(2) & GL_2(5)/2 & SL_2(3) & \mathbb{Z}/4 \\ \end{array}
umbral moonshine conjecture
- Quantum black holes, wall crossing and mock modular forms
- Mathieu moonshine
- monstrous moonshine
- Characters of superconformal algebra and mock theta functions
- K3 surfaces
- Mock Jacobi form
computational resource
expositions
- Shamit Kachru, Elementary introduction to Moonshine, arXiv:1605.00697 [hep-th], May 02 2016, http://arxiv.org/abs/1605.00697
- Cheng Umbral moonshine
- Harvey Moonshine and mock modular forms
articles
- Miranda C. N. Cheng, John F. R. Duncan, Optimal Mock Jacobi Theta Functions, arXiv:1605.04480 [math.NT], May 14 2016, http://arxiv.org/abs/1605.04480
- Tohru Eguchi, Yuji Sugawara, Duality in N=4 Liouville Theory and Moonshine Phenomena, http://arxiv.org/abs/1603.02903v1
- Cheng, Miranda C. N., Francesca Ferrari, Sarah M. Harrison, and Natalie M. Paquette. “Landau-Ginzburg Orbifolds and Symmetries of K3 CFTs.” arXiv:1512.04942 [hep-Th], December 15, 2015. http://arxiv.org/abs/1512.04942.
- Cheng, Miranda C. N., Sarah M. Harrison, Shamit Kachru, and Daniel Whalen. ‘Exceptional Algebra and Sporadic Groups at c=12’. arXiv:1503.07219 [hep-Th], 24 March 2015. http://arxiv.org/abs/1503.07219.
- Duncan, John F. R., Michael J. Griffin, and Ken Ono. ‘Proof of the Umbral Moonshine Conjecture’. arXiv:1503.01472 [math], 4 March 2015. http://arxiv.org/abs/1503.01472.
- Duncan, John F. R., and Jeffrey A. Harvey. “The Umbral Moonshine Module for the Unique Unimodular Niemeier Root System.” arXiv:1412.8191 [hep-Th], December 28, 2014. http://arxiv.org/abs/1412.8191.
- Harvey, Jeffrey A., Sameer Murthy, and Caner Nazaroglu. “ADE Double Scaled Little String Theories, Mock Modular Forms and Umbral Moonshine.” arXiv:1410.6174 [hep-Th], October 22, 2014. http://arxiv.org/abs/1410.6174.
- Cheng, Miranda C. N., and Sarah Harrison. “Umbral Moonshine and K3 Surfaces.” arXiv:1406.0619 [hep-Th], June 3, 2014. http://arxiv.org/abs/1406.0619.
- Cheng, Miranda C. N., John F. R. Duncan, and Jeffrey A. Harvey. 2012. “Umbral Moonshine”. ArXiv e-print 1204.2779. http://arxiv.org/abs/1204.2779.
메타데이터
위키데이터
- ID : Q7881385
Spacy 패턴 목록
- [{'LOWER': 'umbral'}, {'LEMMA': 'moonshine'}]