"Lieb-Liniger delta Bose gas"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
잔글 (찾아 바꾸기 – “* Princeton companion to mathematics(Companion_to_Mathematics.pdf)” 문자열을 “” 문자열로)
 
(사용자 2명의 중간 판 19개는 보이지 않습니다)
1번째 줄: 1번째 줄:
 
==introduction==
 
==introduction==
  
* N bosons interacting on a line of length L via the delta function potential<br>
+
* N bosons interacting on the line <math>[0,L]</math> of length L via the delta function potential
* one-dimensional Bose gas<br>
+
* one-dimensional Bose gas
* 1963 Lieb and Liniger solved by [[Bethe ansatz]]<br>
+
* 1963 Lieb and Liniger solved by [[Bethe ansatz]]
 
+
* In 1963, Lieb and Liniger solved exactly a one dimensional model of bosons interacting by a repulsive \delta-potential and calculated the ground state in the thermodynamic limit
 
+
 
 
 
 
 
 
 
 
  
 
==Hamiltonian==
 
==Hamiltonian==
  
*  quantum mechanical Hamiltonian<br><math>H=-\sum_{j=1}^{N}\frac{\partial^2}{\partial x_j^2}+2c\sum_{1\leq i<j\leq N}^{N}\delta(x_i-x_j)</math><br>
+
*  quantum mechanical Hamiltonian
 +
:<math>H=-\sum_{j=1}^{N}\frac{\partial^2}{\partial x_j^2}+2c\sum_{1\leq i<j\leq N}^{N}\delta(x_i-x_j)</math>
 +
  
 
 
  
 
+
==wave function==
 +
* <math>\psi(x_1, x_2, \dots, x_j, \dots,x_N)</math>
 +
* <math>\psi(x_1, \dots, x_N) =  \sum_P a(P)\exp \left( i \sum_{j=1}^N k_{Pj} x_j\right)</math>
 +
:<math>
 +
a(P) = \prod\nolimits_{1\leq i<j \leq N}\left(1+\frac{ic}{k_{Pi}  -k_{Pj}}\right) \ .
 +
</math>
  
 
 
  
 
==two-body scattering term==
 
==two-body scattering term==
  
* <math>s_{ab}=k_a-k_b+ic</math><br>
+
* <math>s_{ab}=k_a-k_b+ic</math>
  
 
 
  
 
 
  
 
==Bethe-ansatz equation==
 
==Bethe-ansatz equation==
 +
:<math>\exp(ik_jL)=\prod_{l=1}^{N}\frac{k_j-k_l+ic}{k_j-k_l-ic}</math>
  
<math>\exp(ik_jL)=\prod_{l=1}^{N}\frac{k_j-k_l+ic}{k_j-k_l-ic}</math>
+
 
 
 
 
 
 
 
 
  
 
==energy spectrum==
 
==energy spectrum==
 +
* energy of a Bethe state
 +
:<math>E=\sum_{j=1}^{N}k_j^2</math>
  
<math>E=\sum_{j=1}^{N}k_j^2</math>
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
==history==
 
 
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
 
 
 
 
 
 
 
 
  
 
==related items==
 
==related items==
  
 
+
  
 
+
==computational resource==
 +
* [http://msstp.org/?q=node/275 Day 5 - Yang-Baxter, Delta Bosons, Contact Terms]
 +
** [http://msstp.org/sites/default/files/Problems4.pdf Bose-Einstein Condensation and BAE exercise .pdf]
 +
** [http://msstp.org/sites/default/files/problem4.nb Bose-Einstein Condensation and BAE solution .nb]
  
 
==encyclopedia==
 
==encyclopedia==
  
* http://en.wikipedia.org/wiki/
+
* http://en.wikipedia.org/wiki/Lieb-Liniger_model
* http://www.scholarpedia.org/
 
 
 
 
 
 
 
 
 
 
 
 
 
==books==
 
  
 
+
 
 
* [[2010년 books and articles]]<br>
 
* http://gigapedia.info/1/
 
* http://gigapedia.info/1/
 
* http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
 
 
 
[[4909919|4909919]]
 
 
 
 
 
 
 
 
 
  
 
==articles==
 
==articles==
 +
* Tracy, Craig A., and Harold Widom. “On the Ground State Energy of the Delta-Function Bose Gas.” arXiv:1601.04677 [math-Ph], January 18, 2016. http://arxiv.org/abs/1601.04677.
 +
* Zill, J. C., T. M. Wright, K. V. Kheruntsyan, T. Gasenzer, and M. J. Davis. “A Coordinate Bethe Ansatz Approach to the Calculation of Equilibrium and Nonequilibrium Correlations of the One-Dimensional Bose Gas.” arXiv:1601.00434 [cond-Mat, Physics:hep-Th], January 4, 2016. http://arxiv.org/abs/1601.00434.
 +
* Veksler, Hagar, and Shmuel Fishman. “A Generalized Lieb-Liniger Model.” arXiv:1508.02011 [cond-Mat, Physics:math-Ph], August 9, 2015. http://arxiv.org/abs/1508.02011.
 +
* Flassig, Daniel, Andre Franca, and Alexander Pritzel. “Large-N Ground State of the Lieb-Liniger Model and Yang-Mills Theory on a Two-Sphere.” arXiv:1508.01515 [cond-Mat, Physics:hep-Th], August 6, 2015. http://arxiv.org/abs/1508.01515.
 +
* Dorlas, T. C. “Orthogonality and Completeness of the Bethe Ansatz Eigenstates of the Nonlinear Schroedinger Model.” Communications in Mathematical Physics 154, no. 2 (June 1, 1993): 347–76. doi:10.1007/BF02097001.
 +
* Yang, C. N., and C. P. Yang. “Thermodynamics of a One‐Dimensional System of Bosons with Repulsive Delta‐Function Interaction.” Journal of Mathematical Physics 10, no. 7 (July 1, 1969): 1115–22. doi:[10.1063/1.1664947 http://dx.doi.org/10.1063/1.1664947].
 +
* C.N. Yang [http://dx.doi.org/10.1103/PhysRevLett.19.1312 Some exact results for the many-body problem in one dimension with repulsive delta-function interaction], Phys. Rev. Lett. 19 (1967), 1312-1315
 +
* Elliott H. Lieb and Werner Liniger [http://link.aps.org/doi/10.1103/PhysRev.130.1605 Exact Analysis of an Interacting Bose Gas. I. The General Solution and the Ground State], 1963
  
 
 
  
* [http://dx.doi.org/10.1063/1.1664947 Thermodynamics of a One‐Dimensional System of Bosons with Repulsive Delta‐Function Interaction]<br>
 
** C. N. Yang and C. P. Yang, J. Math. Phys. 10, 1115 (1969)
 
* [http://dx.doi.org/10.1103/PhysRevLett.19.1312 Some exact results for the many-body problem in one dimension with repulsive delta-function interaction]<br>
 
** C.N. Yang, Phys. Rev. Lett. 19 (1967), 1312-1315
 
* [http://link.aps.org/doi/10.1103/PhysRev.130.1605 Exact Analysis of an Interacting Bose Gas. I. The General Solution and the Ground State]<br>
 
** Elliott H. Lieb and Werner Liniger, 1963
 
 
* http://www.ams.org/mathscinet
 
* [http://www.zentralblatt-math.org/zmath/en/ ]http://www.zentralblatt-math.org/zmath/en/
 
* [http://arxiv.org/ ]http://arxiv.org/
 
* http://pythagoras0.springnote.com/
 
* http://math.berkeley.edu/~reb/papers/index.html
 
* http://dx.doi.org/
 
 
 
 
 
 
 
 
==question and answers(Math Overflow)==
 
 
* http://mathoverflow.net/search?q=
 
* http://mathoverflow.net/search?q=
 
 
 
 
 
 
 
 
==blogs==
 
 
*  구글 블로그 검색<br>
 
** http://blogsearch.google.com/blogsearch?q=
 
** http://blogsearch.google.com/blogsearch?q=
 
 
 
 
 
 
 
 
==experts on the field==
 
 
* http://arxiv.org/
 
 
 
 
 
 
 
 
==links==
 
 
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier]
 
* [http://pythagoras0.springnote.com/pages/1947378 수식표현 안내]
 
* [http://www.research.att.com/~njas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]
 
* http://functions.wolfram.com/
 
*
 
 
[[분류:integrable systems]]
 
[[분류:integrable systems]]
 
[[분류:math and physics]]
 
[[분류:math and physics]]
[[분류:math and physics]]
+
[[분류:migrate]]
 +
 
 +
==메타데이터==
 +
===위키데이터===
 +
* ID :  [https://www.wikidata.org/wiki/Q6543926 Q6543926]
 +
===Spacy 패턴 목록===
 +
* [{'LOWER': 'lieb'}, {'OP': '*'}, {'LOWER': 'liniger'}, {'LEMMA': 'model'}]

2021년 2월 17일 (수) 03:16 기준 최신판

introduction

  • N bosons interacting on the line \([0,L]\) of length L via the delta function potential
  • one-dimensional Bose gas
  • 1963 Lieb and Liniger solved by Bethe ansatz
  • In 1963, Lieb and Liniger solved exactly a one dimensional model of bosons interacting by a repulsive \delta-potential and calculated the ground state in the thermodynamic limit


Hamiltonian

  • quantum mechanical Hamiltonian

\[H=-\sum_{j=1}^{N}\frac{\partial^2}{\partial x_j^2}+2c\sum_{1\leq i<j\leq N}^{N}\delta(x_i-x_j)\]


wave function

  • \(\psi(x_1, x_2, \dots, x_j, \dots,x_N)\)
  • \(\psi(x_1, \dots, x_N) = \sum_P a(P)\exp \left( i \sum_{j=1}^N k_{Pj} x_j\right)\)

\[ a(P) = \prod\nolimits_{1\leq i<j \leq N}\left(1+\frac{ic}{k_{Pi} -k_{Pj}}\right) \ . \]


two-body scattering term

  • \(s_{ab}=k_a-k_b+ic\)


Bethe-ansatz equation

\[\exp(ik_jL)=\prod_{l=1}^{N}\frac{k_j-k_l+ic}{k_j-k_l-ic}\]


energy spectrum

  • energy of a Bethe state

\[E=\sum_{j=1}^{N}k_j^2\]


related items

computational resource

encyclopedia


articles

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'lieb'}, {'OP': '*'}, {'LOWER': 'liniger'}, {'LEMMA': 'model'}]