"숫자 67"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (찾아 바꾸기 – “* [http://math.dongascience.com/ 수학동아] * [http://www.ams.org/mathmoments/ Mathematical Moments from the AMS] * [http://betterexplained.com/ BetterExplained]” 문자열을 “” 문자열로)
 
(같은 사용자의 중간 판 12개는 보이지 않습니다)
1번째 줄: 1번째 줄:
==이 항목의 스프링노트 원문주소==
 
 
* [[숫자 67]]
 
 
 
 
 
 
 
 
 
==개요==
 
==개요==
  
* 복소 이차 수체 <math>\mathbb{Q}(\sqrt{-67})</math>의  [[수체의 class number|class number]] 는 1이다
+
* 복소 이차 수체 <math>\mathbb{Q}(\sqrt{-67})</math>의  [[수체의 class number|class number]] 는 1이다
 
* <math>\mathbb{Z}[\frac{1+\sqrt{-67}}{2}]</math> 는 UFD 이다
 
* <math>\mathbb{Z}[\frac{1+\sqrt{-67}}{2}]</math> 는 UFD 이다
 
* 소수이며, 비정규소수이다
 
* 소수이며, 비정규소수이다
  
 
+
  
 
+
  
 
==class number 1==
 
==class number 1==
  
*  복소 이차 수체 <math>\mathbb{Q}(\sqrt{-d})</math> 가 [[수체의 class number|class number]] 1인 경우는 다음 9가지가 있다<br>
+
*  복소 이차 수체 <math>\mathbb{Q}(\sqrt{-d})</math> [[수체의 class number|class number]] 1인 경우는 다음 9가지가 있다
 
** <math>d=1,2,3,7,11,19,43,67,163</math>
 
** <math>d=1,2,3,7,11,19,43,67,163</math>
 
* 이로 인하여 여러가지 흥미로운 정수론적 성질을 갖게 된다
 
* 이로 인하여 여러가지 흥미로운 정수론적 성질을 갖게 된다
 
* [[가우스의 class number one 문제]] 항목 참조
 
* [[가우스의 class number one 문제]] 항목 참조
  
 
+
  
 
+
  
 
==오일러의 소수생성다항식==
 
==오일러의 소수생성다항식==
  
*  이차형식 <math>x^2+xy+17y^2</math>는 판별식 <math>\Delta=b^2-4ac=1-68=-67</math>를 가진다<br>
+
*  이차형식 <math>x^2+xy+17y^2</math>는 판별식 <math>\Delta=b^2-4ac=1-68=-67</math>를 가진다
 
** [[정수계수 이변수 이차형식(binary integral quadratic forms)]] 항목 참조
 
** [[정수계수 이변수 이차형식(binary integral quadratic forms)]] 항목 참조
*  다항식 <math>x^2+x+17</math>은 정수 <math>0\leq x \leq 15</math>에서 소수가 된다<br> 17, 19, 23, 29, 37, 47, 59, 73, 89, 107, 127, 149, 173, 199, 227, 257<br>
+
*  다항식 <math>x^2+x+17</math>은 정수 <math>0\leq x \leq 15</math>에서 소수가 된다 17, 19, 23, 29, 37, 47, 59, 73, 89, 107, 127, 149, 173, 199, 227, 257
 
* <math>x=16</math>일 때는 <math>289=17^2</math>로 소수가 아니다
 
* <math>x=16</math>일 때는 <math>289=17^2</math>로 소수가 아니다
 
* [http://www.wolframalpha.com/input/?i=Table%5Bx%5E2%2Bx%2B17%2C%7Bx%2C0%2C15%7D%5D http://www.wolframalpha.com/input/?i=Table[x^2%2Bx%2B17%2C{x%2C0%2C15}]]
 
* [http://www.wolframalpha.com/input/?i=Table%5Bx%5E2%2Bx%2B17%2C%7Bx%2C0%2C15%7D%5D http://www.wolframalpha.com/input/?i=Table[x^2%2Bx%2B17%2C{x%2C0%2C15}]]
 
* [[오일러의 소수생성다항식 x²+x+41|오일러의 소수생성다항식 x² +x+41]] 항목 참조
 
* [[오일러의 소수생성다항식 x²+x+41|오일러의 소수생성다항식 x² +x+41]] 항목 참조
  
 
+
  
 
+
  
 
==라마누잔 수==
 
==라마누잔 수==
  
* <math>e^{\pi \sqrt{67}}</math>은 정수에 매우 가까운 수가 된다<br><math>e^{\pi \sqrt{67}} = 147197952743.9999986624542245068292613\approx 147197952744</math><br>
+
* <math>e^{\pi \sqrt{67}}</math>은 정수에 매우 가까운 수가 된다:<math>e^{\pi \sqrt{67}} = 147197952743.9999986624542245068292613\approx 147197952744</math>
 
* <math>147197952744-744=5280^3</math>
 
* <math>147197952744-744=5280^3</math>
 
* [http://www.wolframalpha.com/input/?i=Exp%5BPi+sqrt%5B67%5D%5D http://www.wolframalpha.com/input/?i=Exp[Pi+sqrt[67]]]
 
* [http://www.wolframalpha.com/input/?i=Exp%5BPi+sqrt%5B67%5D%5D http://www.wolframalpha.com/input/?i=Exp[Pi+sqrt[67]]]
 
* [[타원 모듈라 j-함수 (elliptic modular function, j-invariant)|타원 모듈라 j-함수 (j-invariant)]] 항목 참조
 
* [[타원 모듈라 j-함수 (elliptic modular function, j-invariant)|타원 모듈라 j-함수 (j-invariant)]] 항목 참조
  
 
+
  
 
+
  
 
+
  
 
==비정규소수==
 
==비정규소수==
  
 
* 67은 세번째로 작은 비정규소수
 
* 67은 세번째로 작은 비정규소수
* [[베르누이 수]]<br><math>B_{58}=\frac{84483613348880041862046775994036021}{354}</math><br>
+
* [[베르누이 수]]:<math>B_{58}=\frac{84483613348880041862046775994036021}{354}</math>
 
* 67은 <math>B_{58}</math>의 분자 84483613348880041862046775994036021를 나누는 비정규소수이다
 
* 67은 <math>B_{58}</math>의 분자 84483613348880041862046775994036021를 나누는 비정규소수이다
  
 
* 정의에 대해서는 [[정규소수 (regular prime)]] 항목 참조
 
* 정의에 대해서는 [[정규소수 (regular prime)]] 항목 참조
  
 
+
 
 
 
 
 
 
==역사==
 
  
 
+
 
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
* [[수학사연표 (역사)|수학사연표]]
 
*  
 
 
 
 
 
 
 
 
 
  
 
==메모==
 
==메모==
  
 
+
  
 
+
  
 
==관련된 항목들==
 
==관련된 항목들==
89번째 줄: 69번째 줄:
 
* [[숫자 163]]
 
* [[숫자 163]]
  
 
+
 
 
 
 
 
 
==수학용어번역==
 
  
* http://www.google.com/dictionary?langpair=en|ko&q=
+
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=
 
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
 
  
 
 
  
 
+
  
==사전 형태의 자료==
+
==사전 형태의 자료==
  
 
* [http://ko.wikipedia.org/wiki/67%28%EC%88%AB%EC%9E%90%29 http://ko.wikipedia.org/wiki/67(숫자)]
 
* [http://ko.wikipedia.org/wiki/67%28%EC%88%AB%EC%9E%90%29 http://ko.wikipedia.org/wiki/67(숫자)]
 
* [http://en.wikipedia.org/wiki/67_%28number%29 http://en.wikipedia.org/wiki/67_(number)]
 
* [http://en.wikipedia.org/wiki/67_%28number%29 http://en.wikipedia.org/wiki/67_(number)]
 
* http://en.wikipedia.org/wiki/Heegner_number
 
* http://en.wikipedia.org/wiki/Heegner_number
* http://en.wikipedia.org/wiki/
 
* http://www.wolframalpha.com/input/?i=67
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]<br>
 
** http://www.research.att.com/~njas/sequences/?q=
 
 
 
 
 
 
 
 
==관련논문==
 
 
* http://www.jstor.org/action/doBasicSearch?Query=
 
* http://dx.doi.org/
 
 
 
 
  
 +
  
 +
  
 
+
 
 
 
 
  
 
==관련기사==
 
==관련기사==
  
*  네이버 뉴스 검색 (키워드 수정)<br>
+
*  네이버 뉴스 검색 (키워드 수정)
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=67
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=67
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
+
[[분류:에세이]]
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
 
 
 
 
 
 
 
 
 
 
==블로그==
 
  
구글 블로그 검색<br>
+
==메타데이터==
** http://blogsearch.google.com/blogsearch?q=
+
===위키데이터===
* [http://navercast.naver.com/science/list 네이버 오늘의과학]
+
* ID : [https://www.wikidata.org/wiki/Q713157 Q713157]
 +
===Spacy 패턴 목록===
 +
* [{'LEMMA': '67'}]
 +
* [{'LOWER': 'sixty'}, {'LEMMA': 'seven'}]
 +
* [{'LOWER': 'sixty'}, {'OP': '*'}, {'LEMMA': 'seven'}]

2021년 2월 17일 (수) 04:50 기준 최신판

개요

  • 복소 이차 수체 \(\mathbb{Q}(\sqrt{-67})\)의 class number 는 1이다
  • \(\mathbb{Z}[\frac{1+\sqrt{-67}}{2}]\) 는 UFD 이다
  • 소수이며, 비정규소수이다



class number 1

  • 복소 이차 수체 \(\mathbb{Q}(\sqrt{-d})\) 가 class number 1인 경우는 다음 9가지가 있다
    • \(d=1,2,3,7,11,19,43,67,163\)
  • 이로 인하여 여러가지 흥미로운 정수론적 성질을 갖게 된다
  • 가우스의 class number one 문제 항목 참조



오일러의 소수생성다항식



라마누잔 수




비정규소수

  • 67은 세번째로 작은 비정규소수
  • 베르누이 수\[B_{58}=\frac{84483613348880041862046775994036021}{354}\]
  • 67은 \(B_{58}\)의 분자 84483613348880041862046775994036021를 나누는 비정규소수이다



메모

관련된 항목들





사전 형태의 자료




관련기사

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LEMMA': '67'}]
  • [{'LOWER': 'sixty'}, {'LEMMA': 'seven'}]
  • [{'LOWER': 'sixty'}, {'OP': '*'}, {'LEMMA': 'seven'}]